Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersect Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Interpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups
Compiling and throwing simple dynamic exceptions at runtime for JVM
Can a Wizard take the Magic Initiate feat and select spells from the Wizard list?
Can I ask an author to send me his ebook?
What is the evidence that custom checks in Northern Ireland are going to result in violence?
How to produce a PS1 prompt in bash or ksh93 similar to tcsh
Will I be more secure with my own router behind my ISP's router?
Coin Game with infinite paradox
Is Bran literally the world's memory?
Are Flameskulls resistant to magical piercing damage?
What *exactly* is electrical current, voltage, and resistance?
What kind of equipment or other technology is necessary to photograph sprites (atmospheric phenomenon)
What is the definining line between a helicopter and a drone a person can ride in?
false 'Security alert' from Google - every login generates mails from 'no-reply@accounts.google.com'
How was Lagrange appointed professor of mathematics so early?
"Destructive force" carried by a B-52?
Knights and Knaves question
Like totally amazing interchangeable sister outfit accessory swapping or whatever
Why isn't everyone flabbergasted about Bran's "gift"?
Who can become a wight?
Proving inequality for positive definite matrix
Putting Ant-Man on house arrest
How to mute a string and play another at the same time
“Since the train was delayed for more than an hour, passengers were given a full refund.” – Why is there no article before “passengers”?
How do I deal with an erroneously large refund?
Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersect
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Interpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915
One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?
cox-model kaplan-meier proportional-hazards schoenfeld-residuals
$endgroup$
add a comment |
$begingroup$
"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915
One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?
cox-model kaplan-meier proportional-hazards schoenfeld-residuals
$endgroup$
2
$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46
$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37
add a comment |
$begingroup$
"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915
One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?
cox-model kaplan-meier proportional-hazards schoenfeld-residuals
$endgroup$
"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915
One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?
cox-model kaplan-meier proportional-hazards schoenfeld-residuals
cox-model kaplan-meier proportional-hazards schoenfeld-residuals
edited Apr 6 at 14:09
Omar Rafique
asked Apr 6 at 13:52
Omar RafiqueOmar Rafique
497
497
2
$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46
$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37
add a comment |
2
$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46
$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37
2
2
$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46
$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46
$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37
$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.
You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.
$endgroup$
add a comment |
$begingroup$
You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.
In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "65"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.
You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.
$endgroup$
add a comment |
$begingroup$
It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.
You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.
$endgroup$
add a comment |
$begingroup$
It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.
You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.
$endgroup$
It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.
You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.
answered Apr 6 at 15:51
EdMEdM
22.8k23497
22.8k23497
add a comment |
add a comment |
$begingroup$
You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.
In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.
$endgroup$
add a comment |
$begingroup$
You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.
In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.
$endgroup$
add a comment |
$begingroup$
You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.
In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.
$endgroup$
You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.
In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.
edited Apr 6 at 16:00
answered Apr 6 at 15:37
igoR87igoR87
33710
33710
add a comment |
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46
$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37