Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersect Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Interpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups

Compiling and throwing simple dynamic exceptions at runtime for JVM

Can a Wizard take the Magic Initiate feat and select spells from the Wizard list?

Can I ask an author to send me his ebook?

What is the evidence that custom checks in Northern Ireland are going to result in violence?

How to produce a PS1 prompt in bash or ksh93 similar to tcsh

Will I be more secure with my own router behind my ISP's router?

Coin Game with infinite paradox

Is Bran literally the world's memory?

Are Flameskulls resistant to magical piercing damage?

What *exactly* is electrical current, voltage, and resistance?

What kind of equipment or other technology is necessary to photograph sprites (atmospheric phenomenon)

What is the definining line between a helicopter and a drone a person can ride in?

false 'Security alert' from Google - every login generates mails from 'no-reply@accounts.google.com'

How was Lagrange appointed professor of mathematics so early?

"Destructive force" carried by a B-52?

Knights and Knaves question

Like totally amazing interchangeable sister outfit accessory swapping or whatever

Why isn't everyone flabbergasted about Bran's "gift"?

Who can become a wight?

Proving inequality for positive definite matrix

Putting Ant-Man on house arrest

How to mute a string and play another at the same time

“Since the train was delayed for more than an hour, passengers were given a full refund.” – Why is there no article before “passengers”?

How do I deal with an erroneously large refund?



Schoenfled Residua test shows proportionality hazard assumptions holds but Kaplan-Meier plots intersect



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Interpreting the Schoenfled testViolation of Cox Proportional Hazards by a continuous variableCheck hazard proportional assuption in a large coxphWhat does the “z” in cox.zph mean in RLate Cross of Kaplan-Meier Curves - Does it matter?time varying coefficients in cox proportional hazard modelHow does time factor into Cox regression or a Cox proportional hazards model?Why are Kaplan-Meier curves crossing when Cox PH assumption is not violated (Global Shoenfeld non-significant)?Cox time-dependent coefficient continues to violate the PH assumptionViolation of proportional hazard assumption with big sample size - how to correct for it?Hazard ratio for more than two groups



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37

















1












$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37













1












1








1


1



$begingroup$


"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?










share|cite|improve this question











$endgroup$




"If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold". The issue I am facing is that I got the Kaplam-Meier plot(bleow). We can clearly see that it is overlapping.
But when I plot the Schoenfled residual plots, it suggests otherwise because the black solid line is flat(image below). Also the p-values(below) for Schoenfled residual plots are not significant, suggesting that proportional hazard assumption holds
enter image description hereenter image description here




ftest <- cox.zph(fitcox)
ftest
p
as.factor(C)2 0.945
as.factor(C)3 0.922
as.factor(C)4 0.717
GLOBAL 0.915




One may argue that the three hazard ratios are calculated w.r.t. the red plot. Red plot does not intersect the blue and black plots. So it is understandable that proportional hazard assumption holds.
But red plot does intersect the green one, although only a little...Is that not enough to violate the proportional hazard assumption?







cox-model kaplan-meier proportional-hazards schoenfeld-residuals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 6 at 14:09







Omar Rafique

















asked Apr 6 at 13:52









Omar RafiqueOmar Rafique

497




497







  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37












  • 2




    $begingroup$
    If you cannot reject the null hypothesis, it does not mean that it is true.
    $endgroup$
    – Michael M
    Apr 6 at 14:46











  • $begingroup$
    This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
    $endgroup$
    – Omar Rafique
    Apr 6 at 16:37







2




2




$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46





$begingroup$
If you cannot reject the null hypothesis, it does not mean that it is true.
$endgroup$
– Michael M
Apr 6 at 14:46













$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37




$begingroup$
This reasoning accounts for the p-value. What about the Schoenfled residual plots being flat....
$endgroup$
– Omar Rafique
Apr 6 at 16:37










2 Answers
2






active

oldest

votes


















3












$begingroup$

It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



    In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






    share|cite|improve this answer











    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "65"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



      You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



        You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



          You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.






          share|cite|improve this answer









          $endgroup$



          It’s not clear that the overlaps among the K-M curves are so bad. There might be some crossing at very early times and curves come close to each other at some later times but that type of variability might not be inconsistent with proportional hazards.



          You will have to use your judgement about the underlying subject matter to decide whether this is close enough to proportional hazards for your purposes. You can’t strictly prove that proportional hazards hold so the judgement is whether there is enough evidence against them to matter for your application.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 6 at 15:51









          EdMEdM

          22.8k23497




          22.8k23497























              3












              $begingroup$

              You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



              In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                  In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.






                  share|cite|improve this answer











                  $endgroup$



                  You are comparing descriptive data (kaplan meier lines are crossing) with inference test (schoenfeld test) which in case of a not significant test usually seem to contradict because there is usually some descriptive difference. Imagine someone checking for normal distribution: a not significant Kolmogorov-Smirnov test (= inference test) doesn't mean that the QQ plot (= descriptive data) follows perfectly a normal distribution. Same is true for a not significant t-test where means are not exactly the same. And so on. And as always with tests of significance: they depend on sample size.



                  In this example I would say that the hazards are not perfectly proportional which can be seen in the kaplan meier plots. But this is not a significant violation of the assumption judged by the schoenfeld test. The problem may arise if one strictly follows the scentence you quoted "If Kaplan-Meier plots cross each other then proportional hazard assumption does not hold" which I would question because sometimes there may be "a little" scrossing like here what not means that proportional assumption must be wrong. If this were true there would be no need for a significance test like the schoenfeld test.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Apr 6 at 16:00

























                  answered Apr 6 at 15:37









                  igoR87igoR87

                  33710




                  33710



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Cross Validated!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401515%2fschoenfled-residua-test-shows-proportionality-hazard-assumptions-holds-but-kapla%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                      Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                      Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?