Convergence in probability and convergence in distributionMLE using multivariate normal distributionCollege enrollment probability modelHow do I find the probability mass function of an individual observation for a multinomial logit model?Stochastic process difference equation: stationary distributionWhy use geometric mean for GDP when calculating the credit-to-gdp ratio?To obtain the distribution/variance of two random coefficientsIs the mode of wage distribution a meaningful economic indicator?Reference request: Gender wage gap / Minority wage gapHow to calculate probability of type 1 error from probability density functionIndependently and Identically distributed random variables

Help rendering a complicated sum/product formula

Bash - pair each line of file

Do I need to consider instance restrictions when showing a language is in P?

World War I as a war of liberals against authoritarians?

Print last inputted byte

Do people actually use the word "kaputt" in conversation?

What does "Four-F." mean?

Dropping this riddle here

Describing a chess game in a novel

Can other pieces capture a threatening piece and prevent a checkmate?

Can "few" be used as a subject? If so, what is the rule?

What is name of this 1927 town in Missouri?

Am I eligible for the Eurail Youth pass? I am 27.5 years old

How does 取材で訪れた integrate into this sentence?

Print a physical multiplication table

Why are there no stars visible in cislunar space?

Do US professors/group leaders only get a salary, but no group budget?

What is the term when voters “dishonestly” choose something that they do not want to choose?

Could Sinn Fein swing any Brexit vote in Parliament?

How can add link in Header link Before the Welcome Message in magento 2

Coworker is lying about having kids. What should I do?

Variable completely messes up echoed string

When did antialiasing start being available?

Can a wizard cast a spell during their first turn of combat if they initiated combat by releasing a readied spell?



Convergence in probability and convergence in distribution


MLE using multivariate normal distributionCollege enrollment probability modelHow do I find the probability mass function of an individual observation for a multinomial logit model?Stochastic process difference equation: stationary distributionWhy use geometric mean for GDP when calculating the credit-to-gdp ratio?To obtain the distribution/variance of two random coefficientsIs the mode of wage distribution a meaningful economic indicator?Reference request: Gender wage gap / Minority wage gapHow to calculate probability of type 1 error from probability density functionIndependently and Identically distributed random variables













6












$begingroup$


Im a little confused about the difference of these two concepts, especially the convergence of probability. I understand that $X_n oversetpto Z $ if $Pr(|X_n - Z|>epsilon)=0$ for any $epsilon >0$ when $n rightarrow infty$.



I just need some clarification on what the subscript $n$ means and what $Z$ means. Is $n$ the sample size? is $Z$ a specific value, or another random variable? If it is another random variable, then wouldn't that mean that convergence in probability implies convergence in distribution? Also, Could you please give me some examples of things that are convergent in distribution but not in probability?










share|improve this question







New contributor




Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    See: quora.com/…
    $endgroup$
    – afreelunch
    yesterday















6












$begingroup$


Im a little confused about the difference of these two concepts, especially the convergence of probability. I understand that $X_n oversetpto Z $ if $Pr(|X_n - Z|>epsilon)=0$ for any $epsilon >0$ when $n rightarrow infty$.



I just need some clarification on what the subscript $n$ means and what $Z$ means. Is $n$ the sample size? is $Z$ a specific value, or another random variable? If it is another random variable, then wouldn't that mean that convergence in probability implies convergence in distribution? Also, Could you please give me some examples of things that are convergent in distribution but not in probability?










share|improve this question







New contributor




Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    See: quora.com/…
    $endgroup$
    – afreelunch
    yesterday













6












6








6


1



$begingroup$


Im a little confused about the difference of these two concepts, especially the convergence of probability. I understand that $X_n oversetpto Z $ if $Pr(|X_n - Z|>epsilon)=0$ for any $epsilon >0$ when $n rightarrow infty$.



I just need some clarification on what the subscript $n$ means and what $Z$ means. Is $n$ the sample size? is $Z$ a specific value, or another random variable? If it is another random variable, then wouldn't that mean that convergence in probability implies convergence in distribution? Also, Could you please give me some examples of things that are convergent in distribution but not in probability?










share|improve this question







New contributor




Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Im a little confused about the difference of these two concepts, especially the convergence of probability. I understand that $X_n oversetpto Z $ if $Pr(|X_n - Z|>epsilon)=0$ for any $epsilon >0$ when $n rightarrow infty$.



I just need some clarification on what the subscript $n$ means and what $Z$ means. Is $n$ the sample size? is $Z$ a specific value, or another random variable? If it is another random variable, then wouldn't that mean that convergence in probability implies convergence in distribution? Also, Could you please give me some examples of things that are convergent in distribution but not in probability?







econometrics statistics






share|improve this question







New contributor




Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









Martin Martin

523




523




New contributor




Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Martin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    See: quora.com/…
    $endgroup$
    – afreelunch
    yesterday
















  • $begingroup$
    See: quora.com/…
    $endgroup$
    – afreelunch
    yesterday















$begingroup$
See: quora.com/…
$endgroup$
– afreelunch
yesterday




$begingroup$
See: quora.com/…
$endgroup$
– afreelunch
yesterday










1 Answer
1






active

oldest

votes


















5












$begingroup$

I will attempt to explain the distinction using the simplest example: the sample mean. Suppose we have an iid sample of random variables $X_i_i=1^n$. Then define the sample mean as $barX_n$. As the sample size grows, our value of the sample mean changes, hence the subscript $n$ to emphasize that our sample mean depends on the sample size.



Noting that $barX_n$ itself is a random variable, we can define a sequence of random variables, where elements of the sequence are indexed by different samples (sample size is growing), i.e. $barX_n_n=1^infty$. The weak law of large numbers (WLLN) tells us that so long as $E(X_1^2)<infty$, that
$$plimbarX_n = mu,$$
or equivalently
$$barX_n rightarrow_P mu,$$



where $mu=E(X_1)$. Formally, convergence in probability is defined as
$$forall epsilon>0, lim_n rightarrow infty P(|barX_n - mu| <epsilon)=1. $$
In other words, the probability of our estimate being within $epsilon$ from the true value tends to 1 as $n rightarrow infty$. Convergence in probability gives us confidence our estimators perform well with large samples.



Convergence in distribution tell us something very different and is primarily used for hypothesis testing. Under the same distributional assumptions described above, CLT gives us that
$$sqrtn(barX_n-mu) rightarrow_D N(0,E(X_1^2)).$$
Convergence in distribution means that the cdf of the left-hand size converges at all continuity points to the cdf of the right-hand side, i.e.
$$lim_n rightarrow infty F_n(x) = F(x),$$
where $F_n(x)$ is the cdf of $sqrtn(barX_n-mu)$ and $F(x)$ is the cdf for a $N(0,E(X_1^2))$ distribution. Knowing the limiting distribution allows us to test hypotheses about the sample mean (or whatever estimate we are generating).






share|improve this answer










New contributor




dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    Your definition of convergence in probability is more demanding than the standard definition. For example, suppose $X_n = 1$ with probability $1/n$, with $X_n = 0$ otherwise. It’s clear that $X_n$ must converge in probability to $0$. However, $X_n$ does not converge to $0$ according to your definition, because we always have that $P(|X_n| < varepsilon ) neq 1$ for $varepsilon < 1$ and any $n$.
    $endgroup$
    – Theoretical Economist
    15 hours ago










  • $begingroup$
    Yes, you are right. I posted my answer too quickly and made an error in writing the definition of weak convergence. I have corrected my post.
    $endgroup$
    – dlnB
    14 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "591"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Martin is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f27300%2fconvergence-in-probability-and-convergence-in-distribution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

I will attempt to explain the distinction using the simplest example: the sample mean. Suppose we have an iid sample of random variables $X_i_i=1^n$. Then define the sample mean as $barX_n$. As the sample size grows, our value of the sample mean changes, hence the subscript $n$ to emphasize that our sample mean depends on the sample size.



Noting that $barX_n$ itself is a random variable, we can define a sequence of random variables, where elements of the sequence are indexed by different samples (sample size is growing), i.e. $barX_n_n=1^infty$. The weak law of large numbers (WLLN) tells us that so long as $E(X_1^2)<infty$, that
$$plimbarX_n = mu,$$
or equivalently
$$barX_n rightarrow_P mu,$$



where $mu=E(X_1)$. Formally, convergence in probability is defined as
$$forall epsilon>0, lim_n rightarrow infty P(|barX_n - mu| <epsilon)=1. $$
In other words, the probability of our estimate being within $epsilon$ from the true value tends to 1 as $n rightarrow infty$. Convergence in probability gives us confidence our estimators perform well with large samples.



Convergence in distribution tell us something very different and is primarily used for hypothesis testing. Under the same distributional assumptions described above, CLT gives us that
$$sqrtn(barX_n-mu) rightarrow_D N(0,E(X_1^2)).$$
Convergence in distribution means that the cdf of the left-hand size converges at all continuity points to the cdf of the right-hand side, i.e.
$$lim_n rightarrow infty F_n(x) = F(x),$$
where $F_n(x)$ is the cdf of $sqrtn(barX_n-mu)$ and $F(x)$ is the cdf for a $N(0,E(X_1^2))$ distribution. Knowing the limiting distribution allows us to test hypotheses about the sample mean (or whatever estimate we are generating).






share|improve this answer










New contributor




dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    Your definition of convergence in probability is more demanding than the standard definition. For example, suppose $X_n = 1$ with probability $1/n$, with $X_n = 0$ otherwise. It’s clear that $X_n$ must converge in probability to $0$. However, $X_n$ does not converge to $0$ according to your definition, because we always have that $P(|X_n| < varepsilon ) neq 1$ for $varepsilon < 1$ and any $n$.
    $endgroup$
    – Theoretical Economist
    15 hours ago










  • $begingroup$
    Yes, you are right. I posted my answer too quickly and made an error in writing the definition of weak convergence. I have corrected my post.
    $endgroup$
    – dlnB
    14 hours ago















5












$begingroup$

I will attempt to explain the distinction using the simplest example: the sample mean. Suppose we have an iid sample of random variables $X_i_i=1^n$. Then define the sample mean as $barX_n$. As the sample size grows, our value of the sample mean changes, hence the subscript $n$ to emphasize that our sample mean depends on the sample size.



Noting that $barX_n$ itself is a random variable, we can define a sequence of random variables, where elements of the sequence are indexed by different samples (sample size is growing), i.e. $barX_n_n=1^infty$. The weak law of large numbers (WLLN) tells us that so long as $E(X_1^2)<infty$, that
$$plimbarX_n = mu,$$
or equivalently
$$barX_n rightarrow_P mu,$$



where $mu=E(X_1)$. Formally, convergence in probability is defined as
$$forall epsilon>0, lim_n rightarrow infty P(|barX_n - mu| <epsilon)=1. $$
In other words, the probability of our estimate being within $epsilon$ from the true value tends to 1 as $n rightarrow infty$. Convergence in probability gives us confidence our estimators perform well with large samples.



Convergence in distribution tell us something very different and is primarily used for hypothesis testing. Under the same distributional assumptions described above, CLT gives us that
$$sqrtn(barX_n-mu) rightarrow_D N(0,E(X_1^2)).$$
Convergence in distribution means that the cdf of the left-hand size converges at all continuity points to the cdf of the right-hand side, i.e.
$$lim_n rightarrow infty F_n(x) = F(x),$$
where $F_n(x)$ is the cdf of $sqrtn(barX_n-mu)$ and $F(x)$ is the cdf for a $N(0,E(X_1^2))$ distribution. Knowing the limiting distribution allows us to test hypotheses about the sample mean (or whatever estimate we are generating).






share|improve this answer










New contributor




dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












  • $begingroup$
    Your definition of convergence in probability is more demanding than the standard definition. For example, suppose $X_n = 1$ with probability $1/n$, with $X_n = 0$ otherwise. It’s clear that $X_n$ must converge in probability to $0$. However, $X_n$ does not converge to $0$ according to your definition, because we always have that $P(|X_n| < varepsilon ) neq 1$ for $varepsilon < 1$ and any $n$.
    $endgroup$
    – Theoretical Economist
    15 hours ago










  • $begingroup$
    Yes, you are right. I posted my answer too quickly and made an error in writing the definition of weak convergence. I have corrected my post.
    $endgroup$
    – dlnB
    14 hours ago













5












5








5





$begingroup$

I will attempt to explain the distinction using the simplest example: the sample mean. Suppose we have an iid sample of random variables $X_i_i=1^n$. Then define the sample mean as $barX_n$. As the sample size grows, our value of the sample mean changes, hence the subscript $n$ to emphasize that our sample mean depends on the sample size.



Noting that $barX_n$ itself is a random variable, we can define a sequence of random variables, where elements of the sequence are indexed by different samples (sample size is growing), i.e. $barX_n_n=1^infty$. The weak law of large numbers (WLLN) tells us that so long as $E(X_1^2)<infty$, that
$$plimbarX_n = mu,$$
or equivalently
$$barX_n rightarrow_P mu,$$



where $mu=E(X_1)$. Formally, convergence in probability is defined as
$$forall epsilon>0, lim_n rightarrow infty P(|barX_n - mu| <epsilon)=1. $$
In other words, the probability of our estimate being within $epsilon$ from the true value tends to 1 as $n rightarrow infty$. Convergence in probability gives us confidence our estimators perform well with large samples.



Convergence in distribution tell us something very different and is primarily used for hypothesis testing. Under the same distributional assumptions described above, CLT gives us that
$$sqrtn(barX_n-mu) rightarrow_D N(0,E(X_1^2)).$$
Convergence in distribution means that the cdf of the left-hand size converges at all continuity points to the cdf of the right-hand side, i.e.
$$lim_n rightarrow infty F_n(x) = F(x),$$
where $F_n(x)$ is the cdf of $sqrtn(barX_n-mu)$ and $F(x)$ is the cdf for a $N(0,E(X_1^2))$ distribution. Knowing the limiting distribution allows us to test hypotheses about the sample mean (or whatever estimate we are generating).






share|improve this answer










New contributor




dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



I will attempt to explain the distinction using the simplest example: the sample mean. Suppose we have an iid sample of random variables $X_i_i=1^n$. Then define the sample mean as $barX_n$. As the sample size grows, our value of the sample mean changes, hence the subscript $n$ to emphasize that our sample mean depends on the sample size.



Noting that $barX_n$ itself is a random variable, we can define a sequence of random variables, where elements of the sequence are indexed by different samples (sample size is growing), i.e. $barX_n_n=1^infty$. The weak law of large numbers (WLLN) tells us that so long as $E(X_1^2)<infty$, that
$$plimbarX_n = mu,$$
or equivalently
$$barX_n rightarrow_P mu,$$



where $mu=E(X_1)$. Formally, convergence in probability is defined as
$$forall epsilon>0, lim_n rightarrow infty P(|barX_n - mu| <epsilon)=1. $$
In other words, the probability of our estimate being within $epsilon$ from the true value tends to 1 as $n rightarrow infty$. Convergence in probability gives us confidence our estimators perform well with large samples.



Convergence in distribution tell us something very different and is primarily used for hypothesis testing. Under the same distributional assumptions described above, CLT gives us that
$$sqrtn(barX_n-mu) rightarrow_D N(0,E(X_1^2)).$$
Convergence in distribution means that the cdf of the left-hand size converges at all continuity points to the cdf of the right-hand side, i.e.
$$lim_n rightarrow infty F_n(x) = F(x),$$
where $F_n(x)$ is the cdf of $sqrtn(barX_n-mu)$ and $F(x)$ is the cdf for a $N(0,E(X_1^2))$ distribution. Knowing the limiting distribution allows us to test hypotheses about the sample mean (or whatever estimate we are generating).







share|improve this answer










New contributor




dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this answer



share|improve this answer








edited 14 hours ago





















New contributor




dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered yesterday









dlnBdlnB

4258




4258




New contributor




dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






dlnB is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Your definition of convergence in probability is more demanding than the standard definition. For example, suppose $X_n = 1$ with probability $1/n$, with $X_n = 0$ otherwise. It’s clear that $X_n$ must converge in probability to $0$. However, $X_n$ does not converge to $0$ according to your definition, because we always have that $P(|X_n| < varepsilon ) neq 1$ for $varepsilon < 1$ and any $n$.
    $endgroup$
    – Theoretical Economist
    15 hours ago










  • $begingroup$
    Yes, you are right. I posted my answer too quickly and made an error in writing the definition of weak convergence. I have corrected my post.
    $endgroup$
    – dlnB
    14 hours ago
















  • $begingroup$
    Your definition of convergence in probability is more demanding than the standard definition. For example, suppose $X_n = 1$ with probability $1/n$, with $X_n = 0$ otherwise. It’s clear that $X_n$ must converge in probability to $0$. However, $X_n$ does not converge to $0$ according to your definition, because we always have that $P(|X_n| < varepsilon ) neq 1$ for $varepsilon < 1$ and any $n$.
    $endgroup$
    – Theoretical Economist
    15 hours ago










  • $begingroup$
    Yes, you are right. I posted my answer too quickly and made an error in writing the definition of weak convergence. I have corrected my post.
    $endgroup$
    – dlnB
    14 hours ago















$begingroup$
Your definition of convergence in probability is more demanding than the standard definition. For example, suppose $X_n = 1$ with probability $1/n$, with $X_n = 0$ otherwise. It’s clear that $X_n$ must converge in probability to $0$. However, $X_n$ does not converge to $0$ according to your definition, because we always have that $P(|X_n| < varepsilon ) neq 1$ for $varepsilon < 1$ and any $n$.
$endgroup$
– Theoretical Economist
15 hours ago




$begingroup$
Your definition of convergence in probability is more demanding than the standard definition. For example, suppose $X_n = 1$ with probability $1/n$, with $X_n = 0$ otherwise. It’s clear that $X_n$ must converge in probability to $0$. However, $X_n$ does not converge to $0$ according to your definition, because we always have that $P(|X_n| < varepsilon ) neq 1$ for $varepsilon < 1$ and any $n$.
$endgroup$
– Theoretical Economist
15 hours ago












$begingroup$
Yes, you are right. I posted my answer too quickly and made an error in writing the definition of weak convergence. I have corrected my post.
$endgroup$
– dlnB
14 hours ago




$begingroup$
Yes, you are right. I posted my answer too quickly and made an error in writing the definition of weak convergence. I have corrected my post.
$endgroup$
– dlnB
14 hours ago










Martin is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Martin is a new contributor. Be nice, and check out our Code of Conduct.












Martin is a new contributor. Be nice, and check out our Code of Conduct.











Martin is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Economics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f27300%2fconvergence-in-probability-and-convergence-in-distribution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Marja Vauras Lähteet | Aiheesta muualla | NavigointivalikkoMarja Vauras Turun yliopiston tutkimusportaalissaInfobox OKSuomalaisen Tiedeakatemian varsinaiset jäsenetKasvatustieteiden tiedekunnan dekaanit ja muu johtoMarja VaurasKoulutusvienti on kestävyys- ja ketteryyslaji (2.5.2017)laajentamallaWorldCat Identities0000 0001 0855 9405n86069603utb201588738523620927

Which is better: GPT or RelGAN for text generation?2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task

Is this part of the description of the Archfey warlock's Misty Escape feature redundant?When is entropic ward considered “used”?How does the reaction timing work for Wrath of the Storm? Can it potentially prevent the damage from the triggering attack?Does the Dark Arts Archlich warlock patrons's Arcane Invisibility activate every time you cast a level 1+ spell?When attacking while invisible, when exactly does invisibility break?Can I cast Hellish Rebuke on my turn?Do I have to “pre-cast” a reaction spell in order for it to be triggered?What happens if a Player Misty Escapes into an Invisible CreatureCan a reaction interrupt multiattack?Does the Fiend-patron warlock's Hurl Through Hell feature dispel effects that require the target to be on the same plane as the caster?What are you allowed to do while using the Warlock's Eldritch Master feature?