Why does energy conservation give me the wrong answer in this inelastic collision problem?Collision Between Two Particles: Writing the Mass As A Function of The AngleLoss of kinetic energy in inelastic collisionElastic collision of point particle and rodIn a CMCS 2-body system, why does the speed of the particles after collision stay the same?Conservation of relativistic momentumSpecial Relativity problem using conservation of energy and momentumWhat's the physical reason behind the increment of total kinetic energy of a system after an inelastic collision?How does the mass and velocity affect the elasticity of a collision?Why isn't energy conserved in this collision problem?Predicting elastic collisions

Is there a hypothetical scenario that would make Earth uninhabitable for humans, but not for (the majority of) other animals?

Adding Coordinates to shapefile using ArcPy

Print last inputted byte

Unfrosted light bulb

How to describe a definite one of Picasso's paintings as well as an indefinite one of them?

Help rendering a complicated sum/product formula

I seem to dance, I am not a dancer. Who am I?

Do native speakers use "ultima" and "proxima" frequently in spoken English?

Practical application of matrices and determinants

How is the partial sum of a geometric sequence calculated?

What is the significance behind "40 days" that often appears in the Bible?

Describing a chess game in a novel

What is the English word for a graduation award?

How do hiring committees for research positions view getting "scooped"?

Why didn't Héctor fade away after this character died in the movie Coco?

Am I eligible for the Eurail Youth pass? I am 27.5 years old

What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?

Volumetric fire looks cuboid

Question on point set topology

PTIJ: Why do we blow Shofar on Rosh Hashana and use a Lulav on Sukkos?

Can other pieces capture a threatening piece and prevent a checkmate?

Print a physical multiplication table

Recruiter wants very extensive technical details about all of my previous work

Is it insecure to send a password in a `curl` command?



Why does energy conservation give me the wrong answer in this inelastic collision problem?


Collision Between Two Particles: Writing the Mass As A Function of The AngleLoss of kinetic energy in inelastic collisionElastic collision of point particle and rodIn a CMCS 2-body system, why does the speed of the particles after collision stay the same?Conservation of relativistic momentumSpecial Relativity problem using conservation of energy and momentumWhat's the physical reason behind the increment of total kinetic energy of a system after an inelastic collision?How does the mass and velocity affect the elasticity of a collision?Why isn't energy conserved in this collision problem?Predicting elastic collisions













2












$begingroup$


Suppose there are two objects. The first object is stationary and has the next parameters: v1=0 m/s, m1= 4kg. The second object is heading towards the first one with speed v2= 8m/s and mass m2= 60 kg. Due to collision, objects merge into one and continue to move with the velocity v3. Suppose all the energy gets converted into speed. I want to know the magnitude of velocity v3. My question is : Why do we get slightly different results when using kinetic energy compared to conservation of momentum when solving for v3. If we assume no energy gets converted into heat, couldn't we set up equations like : Ek1=0 J and Ek2=$fracm_2*v_2^22$ . E3=E2+E1=$fracv_3^22*(m_1+m_2)$ . v3=$sqrtfrac(E_1+E_2)*2(m_1+m_2)$ ? Why do we get different result this way comparing to the result when we calculate v3 using conservation of momentum?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Energy is not conserved in your setup.
    $endgroup$
    – Jasper
    yesterday






  • 2




    $begingroup$
    @knzhou With this edit, the answer is right in the title...
    $endgroup$
    – Jasper
    yesterday






  • 1




    $begingroup$
    @Jasper Not at all! If somebody doesn't understand why inelastic collisions (i.e. sticking together) don't conserve energy, the title edit doesn't change anything. All it does is make the answer easier to see for people who do know mechanics.
    $endgroup$
    – knzhou
    yesterday











  • $begingroup$
    Imagine the two objct being cars. When they collide, they change their outer form (alas!), and that takes up some energy you don't get back. That's where the "missing energy" from the correct momentum-based calculation goes into.
    $endgroup$
    – Ralf Kleberhoff
    yesterday






  • 2




    $begingroup$
    @RalfKleberhoff This is where the energy could go, but in general the objects to not need to deform for the collision to be perfectly inelastic.
    $endgroup$
    – Aaron Stevens
    yesterday















2












$begingroup$


Suppose there are two objects. The first object is stationary and has the next parameters: v1=0 m/s, m1= 4kg. The second object is heading towards the first one with speed v2= 8m/s and mass m2= 60 kg. Due to collision, objects merge into one and continue to move with the velocity v3. Suppose all the energy gets converted into speed. I want to know the magnitude of velocity v3. My question is : Why do we get slightly different results when using kinetic energy compared to conservation of momentum when solving for v3. If we assume no energy gets converted into heat, couldn't we set up equations like : Ek1=0 J and Ek2=$fracm_2*v_2^22$ . E3=E2+E1=$fracv_3^22*(m_1+m_2)$ . v3=$sqrtfrac(E_1+E_2)*2(m_1+m_2)$ ? Why do we get different result this way comparing to the result when we calculate v3 using conservation of momentum?










share|cite|improve this question











$endgroup$







  • 3




    $begingroup$
    Energy is not conserved in your setup.
    $endgroup$
    – Jasper
    yesterday






  • 2




    $begingroup$
    @knzhou With this edit, the answer is right in the title...
    $endgroup$
    – Jasper
    yesterday






  • 1




    $begingroup$
    @Jasper Not at all! If somebody doesn't understand why inelastic collisions (i.e. sticking together) don't conserve energy, the title edit doesn't change anything. All it does is make the answer easier to see for people who do know mechanics.
    $endgroup$
    – knzhou
    yesterday











  • $begingroup$
    Imagine the two objct being cars. When they collide, they change their outer form (alas!), and that takes up some energy you don't get back. That's where the "missing energy" from the correct momentum-based calculation goes into.
    $endgroup$
    – Ralf Kleberhoff
    yesterday






  • 2




    $begingroup$
    @RalfKleberhoff This is where the energy could go, but in general the objects to not need to deform for the collision to be perfectly inelastic.
    $endgroup$
    – Aaron Stevens
    yesterday













2












2








2





$begingroup$


Suppose there are two objects. The first object is stationary and has the next parameters: v1=0 m/s, m1= 4kg. The second object is heading towards the first one with speed v2= 8m/s and mass m2= 60 kg. Due to collision, objects merge into one and continue to move with the velocity v3. Suppose all the energy gets converted into speed. I want to know the magnitude of velocity v3. My question is : Why do we get slightly different results when using kinetic energy compared to conservation of momentum when solving for v3. If we assume no energy gets converted into heat, couldn't we set up equations like : Ek1=0 J and Ek2=$fracm_2*v_2^22$ . E3=E2+E1=$fracv_3^22*(m_1+m_2)$ . v3=$sqrtfrac(E_1+E_2)*2(m_1+m_2)$ ? Why do we get different result this way comparing to the result when we calculate v3 using conservation of momentum?










share|cite|improve this question











$endgroup$




Suppose there are two objects. The first object is stationary and has the next parameters: v1=0 m/s, m1= 4kg. The second object is heading towards the first one with speed v2= 8m/s and mass m2= 60 kg. Due to collision, objects merge into one and continue to move with the velocity v3. Suppose all the energy gets converted into speed. I want to know the magnitude of velocity v3. My question is : Why do we get slightly different results when using kinetic energy compared to conservation of momentum when solving for v3. If we assume no energy gets converted into heat, couldn't we set up equations like : Ek1=0 J and Ek2=$fracm_2*v_2^22$ . E3=E2+E1=$fracv_3^22*(m_1+m_2)$ . v3=$sqrtfrac(E_1+E_2)*2(m_1+m_2)$ ? Why do we get different result this way comparing to the result when we calculate v3 using conservation of momentum?







newtonian-mechanics energy momentum energy-conservation collision






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









knzhou

45.1k11122219




45.1k11122219










asked yesterday









ToTheSpace 2ToTheSpace 2

221




221







  • 3




    $begingroup$
    Energy is not conserved in your setup.
    $endgroup$
    – Jasper
    yesterday






  • 2




    $begingroup$
    @knzhou With this edit, the answer is right in the title...
    $endgroup$
    – Jasper
    yesterday






  • 1




    $begingroup$
    @Jasper Not at all! If somebody doesn't understand why inelastic collisions (i.e. sticking together) don't conserve energy, the title edit doesn't change anything. All it does is make the answer easier to see for people who do know mechanics.
    $endgroup$
    – knzhou
    yesterday











  • $begingroup$
    Imagine the two objct being cars. When they collide, they change their outer form (alas!), and that takes up some energy you don't get back. That's where the "missing energy" from the correct momentum-based calculation goes into.
    $endgroup$
    – Ralf Kleberhoff
    yesterday






  • 2




    $begingroup$
    @RalfKleberhoff This is where the energy could go, but in general the objects to not need to deform for the collision to be perfectly inelastic.
    $endgroup$
    – Aaron Stevens
    yesterday












  • 3




    $begingroup$
    Energy is not conserved in your setup.
    $endgroup$
    – Jasper
    yesterday






  • 2




    $begingroup$
    @knzhou With this edit, the answer is right in the title...
    $endgroup$
    – Jasper
    yesterday






  • 1




    $begingroup$
    @Jasper Not at all! If somebody doesn't understand why inelastic collisions (i.e. sticking together) don't conserve energy, the title edit doesn't change anything. All it does is make the answer easier to see for people who do know mechanics.
    $endgroup$
    – knzhou
    yesterday











  • $begingroup$
    Imagine the two objct being cars. When they collide, they change their outer form (alas!), and that takes up some energy you don't get back. That's where the "missing energy" from the correct momentum-based calculation goes into.
    $endgroup$
    – Ralf Kleberhoff
    yesterday






  • 2




    $begingroup$
    @RalfKleberhoff This is where the energy could go, but in general the objects to not need to deform for the collision to be perfectly inelastic.
    $endgroup$
    – Aaron Stevens
    yesterday







3




3




$begingroup$
Energy is not conserved in your setup.
$endgroup$
– Jasper
yesterday




$begingroup$
Energy is not conserved in your setup.
$endgroup$
– Jasper
yesterday




2




2




$begingroup$
@knzhou With this edit, the answer is right in the title...
$endgroup$
– Jasper
yesterday




$begingroup$
@knzhou With this edit, the answer is right in the title...
$endgroup$
– Jasper
yesterday




1




1




$begingroup$
@Jasper Not at all! If somebody doesn't understand why inelastic collisions (i.e. sticking together) don't conserve energy, the title edit doesn't change anything. All it does is make the answer easier to see for people who do know mechanics.
$endgroup$
– knzhou
yesterday





$begingroup$
@Jasper Not at all! If somebody doesn't understand why inelastic collisions (i.e. sticking together) don't conserve energy, the title edit doesn't change anything. All it does is make the answer easier to see for people who do know mechanics.
$endgroup$
– knzhou
yesterday













$begingroup$
Imagine the two objct being cars. When they collide, they change their outer form (alas!), and that takes up some energy you don't get back. That's where the "missing energy" from the correct momentum-based calculation goes into.
$endgroup$
– Ralf Kleberhoff
yesterday




$begingroup$
Imagine the two objct being cars. When they collide, they change their outer form (alas!), and that takes up some energy you don't get back. That's where the "missing energy" from the correct momentum-based calculation goes into.
$endgroup$
– Ralf Kleberhoff
yesterday




2




2




$begingroup$
@RalfKleberhoff This is where the energy could go, but in general the objects to not need to deform for the collision to be perfectly inelastic.
$endgroup$
– Aaron Stevens
yesterday




$begingroup$
@RalfKleberhoff This is where the energy could go, but in general the objects to not need to deform for the collision to be perfectly inelastic.
$endgroup$
– Aaron Stevens
yesterday










5 Answers
5






active

oldest

votes


















4












$begingroup$

Momentum is conserved if there are no external forces involved. This is the case in your setup, so the final velocity you get from conservation of momentum is right.



If you start with conservation of energy, you'll see that you get a different velocity.



Since physicists strongly believe in conservation of energy, this means that some of the mechanical energy went somewhere. This is a strong hint that you can not assume conservation of mechanical energy at will. If you assume both conservation of momentum and energy, the bodies can't stick together and move as one.



The "sticking" eats up some energy that is lost on the mechanical side.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    Since physicists strongly believe in conservation of energy... I don't think the belief in it makes the conclusions true. Conservation of energy isn't like Tinker Bell :)
    $endgroup$
    – Aaron Stevens
    yesterday


















4












$begingroup$

The other answers are correct in saying that energy is not conserved, but I feel like they are lacking in truly showing why this is the case. So let's assume energy and momentum are both conserved in this process and see that we arrive at a contradiction.



So we have object 1 at rest and object 2 hits it and they stick together. Using momentum conservation:
$$m_2v_2=m_1v+m_2v$$



Using energy conservation (cancelling $1/2$ from each term):
$$m_2v_2^2=m_1v^2+m_2v^2$$



Now for fun tricks. In each of the above equations let's get all terms involving object 2 on the left and all terms involving object 1 on the right and then divide the energy equation by the momentum equation:



$$fracm_2(v_2^2-v^2)m_2(v_2-v)=fracm_1v^2m_1v$$



Now, $v_2^2-v^2=(v_2-v)(v_2+v)$, therefore (cancelling many things)



$$v_2+v=v$$
or
$$v_2=0$$



Uh oh. We see that before the collision object 2 is at rest. But object 1 was at rest also$^*$. Therefore no collision with these properties could have occurred. Therefore something is wrong with our assumptions of both energy and momentum conservation.



Momentum has to be conserved since there are no external forces on the system. Therefore it must be that energy is not conserved. There is nothing saying energy must be conserved here, but we have now shown that it actually cannot be conserved.




$^*$ In general if we had specified the velocity of $m_1$ by $v_1$ we would have arrived at $v_1=v_2$ using similar methods used above. This just means the objects started out with the same velocity and never actually collide. Therefore, the only way our system can conserve both energy and momentum and have equal "final" velocities is if no collision happened.






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    The objects are merged, and an inelastic collision is one in which objects stick together after impact: kinetic energy is not conserved. Therefore, you can't assume that kinetic energy is conserved; merging takes a little bit of energy.



    If this system is isolated, and no force acted upon neither of the two objects, then, momentum is conserved; hence, you can calculate the final velocity using the momentum's equation.






    share|cite|improve this answer








    New contributor




    Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$




















      2












      $begingroup$


      Suppose all the energy gets converted into speed.




      Uh oh! That's your error. You can't just suppose that something that doesn't happen, happens.



      The collision was inelastic. That means some of the energy gets converted to heat, as the objects merge. This is the difference between your total before and after energy.






      share|cite|improve this answer









      $endgroup$




















        -2












        $begingroup$

        I think that the hypothesis of momentum conservation is flawed since the problem really doesn't state that. Also there's nothing saying that the system is isolated at all.



        Hence you calculated what you can (assuming that "energy" in the problem statement refers only to the kinetic energy itself).
        If the hypothesis of kinetic energy conversion is correct (I would assume so since it's stated) then your energy-based calculation is correct :) and the missing momentum is due to an external source.






        share|cite|improve this answer








        New contributor




        user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$








        • 2




          $begingroup$
          Momentum is conserved in collisions. Why would you assume external forces? It seems like you are the one making additional assumptions, not the OP.
          $endgroup$
          – Aaron Stevens
          yesterday











        • $begingroup$
          @Aaron: I know what is momentum/energy conservation. I'm not making any additional assumptions and just using the conditions stated in the problem. If the problem is badly formulated this is another situation.
          $endgroup$
          – user3155984
          yesterday






        • 1




          $begingroup$
          The problem isn't poorly formulated. Just before and just after the collision momentum has to be conserved. If there are external forces then you just have to look just before and just after. Momentum will not be lost due to the collision, and it seems like the OP is interested in the collision, not unspecified external forces that aren't involved with the collision.
          $endgroup$
          – Aaron Stevens
          yesterday










        • $begingroup$
          @AaronStevens The problem is badly formulated in the sense that it imposes two assumptions that contradict each other (given that there are no external forces), namely "objects merge into one" and "all the energy gets converted into speed."
          $endgroup$
          – Andreas Blass
          yesterday










        • $begingroup$
          No... The OP is incorrectly assuming that energy is conserved when the objects stick together. The "problem" (or you could say system) is just a perfectly inelastic collision where the objects stick together. Any incorrect assumptions come from the OP, not from the "problem" or system.
          $endgroup$
          – Aaron Stevens
          yesterday










        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "151"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466744%2fwhy-does-energy-conservation-give-me-the-wrong-answer-in-this-inelastic-collisio%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Momentum is conserved if there are no external forces involved. This is the case in your setup, so the final velocity you get from conservation of momentum is right.



        If you start with conservation of energy, you'll see that you get a different velocity.



        Since physicists strongly believe in conservation of energy, this means that some of the mechanical energy went somewhere. This is a strong hint that you can not assume conservation of mechanical energy at will. If you assume both conservation of momentum and energy, the bodies can't stick together and move as one.



        The "sticking" eats up some energy that is lost on the mechanical side.






        share|cite|improve this answer









        $endgroup$








        • 2




          $begingroup$
          Since physicists strongly believe in conservation of energy... I don't think the belief in it makes the conclusions true. Conservation of energy isn't like Tinker Bell :)
          $endgroup$
          – Aaron Stevens
          yesterday















        4












        $begingroup$

        Momentum is conserved if there are no external forces involved. This is the case in your setup, so the final velocity you get from conservation of momentum is right.



        If you start with conservation of energy, you'll see that you get a different velocity.



        Since physicists strongly believe in conservation of energy, this means that some of the mechanical energy went somewhere. This is a strong hint that you can not assume conservation of mechanical energy at will. If you assume both conservation of momentum and energy, the bodies can't stick together and move as one.



        The "sticking" eats up some energy that is lost on the mechanical side.






        share|cite|improve this answer









        $endgroup$








        • 2




          $begingroup$
          Since physicists strongly believe in conservation of energy... I don't think the belief in it makes the conclusions true. Conservation of energy isn't like Tinker Bell :)
          $endgroup$
          – Aaron Stevens
          yesterday













        4












        4








        4





        $begingroup$

        Momentum is conserved if there are no external forces involved. This is the case in your setup, so the final velocity you get from conservation of momentum is right.



        If you start with conservation of energy, you'll see that you get a different velocity.



        Since physicists strongly believe in conservation of energy, this means that some of the mechanical energy went somewhere. This is a strong hint that you can not assume conservation of mechanical energy at will. If you assume both conservation of momentum and energy, the bodies can't stick together and move as one.



        The "sticking" eats up some energy that is lost on the mechanical side.






        share|cite|improve this answer









        $endgroup$



        Momentum is conserved if there are no external forces involved. This is the case in your setup, so the final velocity you get from conservation of momentum is right.



        If you start with conservation of energy, you'll see that you get a different velocity.



        Since physicists strongly believe in conservation of energy, this means that some of the mechanical energy went somewhere. This is a strong hint that you can not assume conservation of mechanical energy at will. If you assume both conservation of momentum and energy, the bodies can't stick together and move as one.



        The "sticking" eats up some energy that is lost on the mechanical side.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        JasperJasper

        1,0941517




        1,0941517







        • 2




          $begingroup$
          Since physicists strongly believe in conservation of energy... I don't think the belief in it makes the conclusions true. Conservation of energy isn't like Tinker Bell :)
          $endgroup$
          – Aaron Stevens
          yesterday












        • 2




          $begingroup$
          Since physicists strongly believe in conservation of energy... I don't think the belief in it makes the conclusions true. Conservation of energy isn't like Tinker Bell :)
          $endgroup$
          – Aaron Stevens
          yesterday







        2




        2




        $begingroup$
        Since physicists strongly believe in conservation of energy... I don't think the belief in it makes the conclusions true. Conservation of energy isn't like Tinker Bell :)
        $endgroup$
        – Aaron Stevens
        yesterday




        $begingroup$
        Since physicists strongly believe in conservation of energy... I don't think the belief in it makes the conclusions true. Conservation of energy isn't like Tinker Bell :)
        $endgroup$
        – Aaron Stevens
        yesterday











        4












        $begingroup$

        The other answers are correct in saying that energy is not conserved, but I feel like they are lacking in truly showing why this is the case. So let's assume energy and momentum are both conserved in this process and see that we arrive at a contradiction.



        So we have object 1 at rest and object 2 hits it and they stick together. Using momentum conservation:
        $$m_2v_2=m_1v+m_2v$$



        Using energy conservation (cancelling $1/2$ from each term):
        $$m_2v_2^2=m_1v^2+m_2v^2$$



        Now for fun tricks. In each of the above equations let's get all terms involving object 2 on the left and all terms involving object 1 on the right and then divide the energy equation by the momentum equation:



        $$fracm_2(v_2^2-v^2)m_2(v_2-v)=fracm_1v^2m_1v$$



        Now, $v_2^2-v^2=(v_2-v)(v_2+v)$, therefore (cancelling many things)



        $$v_2+v=v$$
        or
        $$v_2=0$$



        Uh oh. We see that before the collision object 2 is at rest. But object 1 was at rest also$^*$. Therefore no collision with these properties could have occurred. Therefore something is wrong with our assumptions of both energy and momentum conservation.



        Momentum has to be conserved since there are no external forces on the system. Therefore it must be that energy is not conserved. There is nothing saying energy must be conserved here, but we have now shown that it actually cannot be conserved.




        $^*$ In general if we had specified the velocity of $m_1$ by $v_1$ we would have arrived at $v_1=v_2$ using similar methods used above. This just means the objects started out with the same velocity and never actually collide. Therefore, the only way our system can conserve both energy and momentum and have equal "final" velocities is if no collision happened.






        share|cite|improve this answer











        $endgroup$

















          4












          $begingroup$

          The other answers are correct in saying that energy is not conserved, but I feel like they are lacking in truly showing why this is the case. So let's assume energy and momentum are both conserved in this process and see that we arrive at a contradiction.



          So we have object 1 at rest and object 2 hits it and they stick together. Using momentum conservation:
          $$m_2v_2=m_1v+m_2v$$



          Using energy conservation (cancelling $1/2$ from each term):
          $$m_2v_2^2=m_1v^2+m_2v^2$$



          Now for fun tricks. In each of the above equations let's get all terms involving object 2 on the left and all terms involving object 1 on the right and then divide the energy equation by the momentum equation:



          $$fracm_2(v_2^2-v^2)m_2(v_2-v)=fracm_1v^2m_1v$$



          Now, $v_2^2-v^2=(v_2-v)(v_2+v)$, therefore (cancelling many things)



          $$v_2+v=v$$
          or
          $$v_2=0$$



          Uh oh. We see that before the collision object 2 is at rest. But object 1 was at rest also$^*$. Therefore no collision with these properties could have occurred. Therefore something is wrong with our assumptions of both energy and momentum conservation.



          Momentum has to be conserved since there are no external forces on the system. Therefore it must be that energy is not conserved. There is nothing saying energy must be conserved here, but we have now shown that it actually cannot be conserved.




          $^*$ In general if we had specified the velocity of $m_1$ by $v_1$ we would have arrived at $v_1=v_2$ using similar methods used above. This just means the objects started out with the same velocity and never actually collide. Therefore, the only way our system can conserve both energy and momentum and have equal "final" velocities is if no collision happened.






          share|cite|improve this answer











          $endgroup$















            4












            4








            4





            $begingroup$

            The other answers are correct in saying that energy is not conserved, but I feel like they are lacking in truly showing why this is the case. So let's assume energy and momentum are both conserved in this process and see that we arrive at a contradiction.



            So we have object 1 at rest and object 2 hits it and they stick together. Using momentum conservation:
            $$m_2v_2=m_1v+m_2v$$



            Using energy conservation (cancelling $1/2$ from each term):
            $$m_2v_2^2=m_1v^2+m_2v^2$$



            Now for fun tricks. In each of the above equations let's get all terms involving object 2 on the left and all terms involving object 1 on the right and then divide the energy equation by the momentum equation:



            $$fracm_2(v_2^2-v^2)m_2(v_2-v)=fracm_1v^2m_1v$$



            Now, $v_2^2-v^2=(v_2-v)(v_2+v)$, therefore (cancelling many things)



            $$v_2+v=v$$
            or
            $$v_2=0$$



            Uh oh. We see that before the collision object 2 is at rest. But object 1 was at rest also$^*$. Therefore no collision with these properties could have occurred. Therefore something is wrong with our assumptions of both energy and momentum conservation.



            Momentum has to be conserved since there are no external forces on the system. Therefore it must be that energy is not conserved. There is nothing saying energy must be conserved here, but we have now shown that it actually cannot be conserved.




            $^*$ In general if we had specified the velocity of $m_1$ by $v_1$ we would have arrived at $v_1=v_2$ using similar methods used above. This just means the objects started out with the same velocity and never actually collide. Therefore, the only way our system can conserve both energy and momentum and have equal "final" velocities is if no collision happened.






            share|cite|improve this answer











            $endgroup$



            The other answers are correct in saying that energy is not conserved, but I feel like they are lacking in truly showing why this is the case. So let's assume energy and momentum are both conserved in this process and see that we arrive at a contradiction.



            So we have object 1 at rest and object 2 hits it and they stick together. Using momentum conservation:
            $$m_2v_2=m_1v+m_2v$$



            Using energy conservation (cancelling $1/2$ from each term):
            $$m_2v_2^2=m_1v^2+m_2v^2$$



            Now for fun tricks. In each of the above equations let's get all terms involving object 2 on the left and all terms involving object 1 on the right and then divide the energy equation by the momentum equation:



            $$fracm_2(v_2^2-v^2)m_2(v_2-v)=fracm_1v^2m_1v$$



            Now, $v_2^2-v^2=(v_2-v)(v_2+v)$, therefore (cancelling many things)



            $$v_2+v=v$$
            or
            $$v_2=0$$



            Uh oh. We see that before the collision object 2 is at rest. But object 1 was at rest also$^*$. Therefore no collision with these properties could have occurred. Therefore something is wrong with our assumptions of both energy and momentum conservation.



            Momentum has to be conserved since there are no external forces on the system. Therefore it must be that energy is not conserved. There is nothing saying energy must be conserved here, but we have now shown that it actually cannot be conserved.




            $^*$ In general if we had specified the velocity of $m_1$ by $v_1$ we would have arrived at $v_1=v_2$ using similar methods used above. This just means the objects started out with the same velocity and never actually collide. Therefore, the only way our system can conserve both energy and momentum and have equal "final" velocities is if no collision happened.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited yesterday

























            answered yesterday









            Aaron StevensAaron Stevens

            13.1k42248




            13.1k42248





















                2












                $begingroup$

                The objects are merged, and an inelastic collision is one in which objects stick together after impact: kinetic energy is not conserved. Therefore, you can't assume that kinetic energy is conserved; merging takes a little bit of energy.



                If this system is isolated, and no force acted upon neither of the two objects, then, momentum is conserved; hence, you can calculate the final velocity using the momentum's equation.






                share|cite|improve this answer








                New contributor




                Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$

















                  2












                  $begingroup$

                  The objects are merged, and an inelastic collision is one in which objects stick together after impact: kinetic energy is not conserved. Therefore, you can't assume that kinetic energy is conserved; merging takes a little bit of energy.



                  If this system is isolated, and no force acted upon neither of the two objects, then, momentum is conserved; hence, you can calculate the final velocity using the momentum's equation.






                  share|cite|improve this answer








                  New contributor




                  Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    The objects are merged, and an inelastic collision is one in which objects stick together after impact: kinetic energy is not conserved. Therefore, you can't assume that kinetic energy is conserved; merging takes a little bit of energy.



                    If this system is isolated, and no force acted upon neither of the two objects, then, momentum is conserved; hence, you can calculate the final velocity using the momentum's equation.






                    share|cite|improve this answer








                    New contributor




                    Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$



                    The objects are merged, and an inelastic collision is one in which objects stick together after impact: kinetic energy is not conserved. Therefore, you can't assume that kinetic energy is conserved; merging takes a little bit of energy.



                    If this system is isolated, and no force acted upon neither of the two objects, then, momentum is conserved; hence, you can calculate the final velocity using the momentum's equation.







                    share|cite|improve this answer








                    New contributor




                    Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    share|cite|improve this answer



                    share|cite|improve this answer






                    New contributor




                    Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    answered yesterday









                    Busy MinderBusy Minder

                    213




                    213




                    New contributor




                    Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





                    New contributor





                    Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    Busy Minder is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





















                        2












                        $begingroup$


                        Suppose all the energy gets converted into speed.




                        Uh oh! That's your error. You can't just suppose that something that doesn't happen, happens.



                        The collision was inelastic. That means some of the energy gets converted to heat, as the objects merge. This is the difference between your total before and after energy.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$


                          Suppose all the energy gets converted into speed.




                          Uh oh! That's your error. You can't just suppose that something that doesn't happen, happens.



                          The collision was inelastic. That means some of the energy gets converted to heat, as the objects merge. This is the difference between your total before and after energy.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$


                            Suppose all the energy gets converted into speed.




                            Uh oh! That's your error. You can't just suppose that something that doesn't happen, happens.



                            The collision was inelastic. That means some of the energy gets converted to heat, as the objects merge. This is the difference between your total before and after energy.






                            share|cite|improve this answer









                            $endgroup$




                            Suppose all the energy gets converted into speed.




                            Uh oh! That's your error. You can't just suppose that something that doesn't happen, happens.



                            The collision was inelastic. That means some of the energy gets converted to heat, as the objects merge. This is the difference between your total before and after energy.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered yesterday









                            Neil_UKNeil_UK

                            1605




                            1605





















                                -2












                                $begingroup$

                                I think that the hypothesis of momentum conservation is flawed since the problem really doesn't state that. Also there's nothing saying that the system is isolated at all.



                                Hence you calculated what you can (assuming that "energy" in the problem statement refers only to the kinetic energy itself).
                                If the hypothesis of kinetic energy conversion is correct (I would assume so since it's stated) then your energy-based calculation is correct :) and the missing momentum is due to an external source.






                                share|cite|improve this answer








                                New contributor




                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.






                                $endgroup$








                                • 2




                                  $begingroup$
                                  Momentum is conserved in collisions. Why would you assume external forces? It seems like you are the one making additional assumptions, not the OP.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday











                                • $begingroup$
                                  @Aaron: I know what is momentum/energy conservation. I'm not making any additional assumptions and just using the conditions stated in the problem. If the problem is badly formulated this is another situation.
                                  $endgroup$
                                  – user3155984
                                  yesterday






                                • 1




                                  $begingroup$
                                  The problem isn't poorly formulated. Just before and just after the collision momentum has to be conserved. If there are external forces then you just have to look just before and just after. Momentum will not be lost due to the collision, and it seems like the OP is interested in the collision, not unspecified external forces that aren't involved with the collision.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday










                                • $begingroup$
                                  @AaronStevens The problem is badly formulated in the sense that it imposes two assumptions that contradict each other (given that there are no external forces), namely "objects merge into one" and "all the energy gets converted into speed."
                                  $endgroup$
                                  – Andreas Blass
                                  yesterday










                                • $begingroup$
                                  No... The OP is incorrectly assuming that energy is conserved when the objects stick together. The "problem" (or you could say system) is just a perfectly inelastic collision where the objects stick together. Any incorrect assumptions come from the OP, not from the "problem" or system.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday















                                -2












                                $begingroup$

                                I think that the hypothesis of momentum conservation is flawed since the problem really doesn't state that. Also there's nothing saying that the system is isolated at all.



                                Hence you calculated what you can (assuming that "energy" in the problem statement refers only to the kinetic energy itself).
                                If the hypothesis of kinetic energy conversion is correct (I would assume so since it's stated) then your energy-based calculation is correct :) and the missing momentum is due to an external source.






                                share|cite|improve this answer








                                New contributor




                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.






                                $endgroup$








                                • 2




                                  $begingroup$
                                  Momentum is conserved in collisions. Why would you assume external forces? It seems like you are the one making additional assumptions, not the OP.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday











                                • $begingroup$
                                  @Aaron: I know what is momentum/energy conservation. I'm not making any additional assumptions and just using the conditions stated in the problem. If the problem is badly formulated this is another situation.
                                  $endgroup$
                                  – user3155984
                                  yesterday






                                • 1




                                  $begingroup$
                                  The problem isn't poorly formulated. Just before and just after the collision momentum has to be conserved. If there are external forces then you just have to look just before and just after. Momentum will not be lost due to the collision, and it seems like the OP is interested in the collision, not unspecified external forces that aren't involved with the collision.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday










                                • $begingroup$
                                  @AaronStevens The problem is badly formulated in the sense that it imposes two assumptions that contradict each other (given that there are no external forces), namely "objects merge into one" and "all the energy gets converted into speed."
                                  $endgroup$
                                  – Andreas Blass
                                  yesterday










                                • $begingroup$
                                  No... The OP is incorrectly assuming that energy is conserved when the objects stick together. The "problem" (or you could say system) is just a perfectly inelastic collision where the objects stick together. Any incorrect assumptions come from the OP, not from the "problem" or system.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday













                                -2












                                -2








                                -2





                                $begingroup$

                                I think that the hypothesis of momentum conservation is flawed since the problem really doesn't state that. Also there's nothing saying that the system is isolated at all.



                                Hence you calculated what you can (assuming that "energy" in the problem statement refers only to the kinetic energy itself).
                                If the hypothesis of kinetic energy conversion is correct (I would assume so since it's stated) then your energy-based calculation is correct :) and the missing momentum is due to an external source.






                                share|cite|improve this answer








                                New contributor




                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.






                                $endgroup$



                                I think that the hypothesis of momentum conservation is flawed since the problem really doesn't state that. Also there's nothing saying that the system is isolated at all.



                                Hence you calculated what you can (assuming that "energy" in the problem statement refers only to the kinetic energy itself).
                                If the hypothesis of kinetic energy conversion is correct (I would assume so since it's stated) then your energy-based calculation is correct :) and the missing momentum is due to an external source.







                                share|cite|improve this answer








                                New contributor




                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.









                                share|cite|improve this answer



                                share|cite|improve this answer






                                New contributor




                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.









                                answered yesterday









                                user3155984user3155984

                                1




                                1




                                New contributor




                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.





                                New contributor





                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.






                                user3155984 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                Check out our Code of Conduct.







                                • 2




                                  $begingroup$
                                  Momentum is conserved in collisions. Why would you assume external forces? It seems like you are the one making additional assumptions, not the OP.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday











                                • $begingroup$
                                  @Aaron: I know what is momentum/energy conservation. I'm not making any additional assumptions and just using the conditions stated in the problem. If the problem is badly formulated this is another situation.
                                  $endgroup$
                                  – user3155984
                                  yesterday






                                • 1




                                  $begingroup$
                                  The problem isn't poorly formulated. Just before and just after the collision momentum has to be conserved. If there are external forces then you just have to look just before and just after. Momentum will not be lost due to the collision, and it seems like the OP is interested in the collision, not unspecified external forces that aren't involved with the collision.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday










                                • $begingroup$
                                  @AaronStevens The problem is badly formulated in the sense that it imposes two assumptions that contradict each other (given that there are no external forces), namely "objects merge into one" and "all the energy gets converted into speed."
                                  $endgroup$
                                  – Andreas Blass
                                  yesterday










                                • $begingroup$
                                  No... The OP is incorrectly assuming that energy is conserved when the objects stick together. The "problem" (or you could say system) is just a perfectly inelastic collision where the objects stick together. Any incorrect assumptions come from the OP, not from the "problem" or system.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday












                                • 2




                                  $begingroup$
                                  Momentum is conserved in collisions. Why would you assume external forces? It seems like you are the one making additional assumptions, not the OP.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday











                                • $begingroup$
                                  @Aaron: I know what is momentum/energy conservation. I'm not making any additional assumptions and just using the conditions stated in the problem. If the problem is badly formulated this is another situation.
                                  $endgroup$
                                  – user3155984
                                  yesterday






                                • 1




                                  $begingroup$
                                  The problem isn't poorly formulated. Just before and just after the collision momentum has to be conserved. If there are external forces then you just have to look just before and just after. Momentum will not be lost due to the collision, and it seems like the OP is interested in the collision, not unspecified external forces that aren't involved with the collision.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday










                                • $begingroup$
                                  @AaronStevens The problem is badly formulated in the sense that it imposes two assumptions that contradict each other (given that there are no external forces), namely "objects merge into one" and "all the energy gets converted into speed."
                                  $endgroup$
                                  – Andreas Blass
                                  yesterday










                                • $begingroup$
                                  No... The OP is incorrectly assuming that energy is conserved when the objects stick together. The "problem" (or you could say system) is just a perfectly inelastic collision where the objects stick together. Any incorrect assumptions come from the OP, not from the "problem" or system.
                                  $endgroup$
                                  – Aaron Stevens
                                  yesterday







                                2




                                2




                                $begingroup$
                                Momentum is conserved in collisions. Why would you assume external forces? It seems like you are the one making additional assumptions, not the OP.
                                $endgroup$
                                – Aaron Stevens
                                yesterday





                                $begingroup$
                                Momentum is conserved in collisions. Why would you assume external forces? It seems like you are the one making additional assumptions, not the OP.
                                $endgroup$
                                – Aaron Stevens
                                yesterday













                                $begingroup$
                                @Aaron: I know what is momentum/energy conservation. I'm not making any additional assumptions and just using the conditions stated in the problem. If the problem is badly formulated this is another situation.
                                $endgroup$
                                – user3155984
                                yesterday




                                $begingroup$
                                @Aaron: I know what is momentum/energy conservation. I'm not making any additional assumptions and just using the conditions stated in the problem. If the problem is badly formulated this is another situation.
                                $endgroup$
                                – user3155984
                                yesterday




                                1




                                1




                                $begingroup$
                                The problem isn't poorly formulated. Just before and just after the collision momentum has to be conserved. If there are external forces then you just have to look just before and just after. Momentum will not be lost due to the collision, and it seems like the OP is interested in the collision, not unspecified external forces that aren't involved with the collision.
                                $endgroup$
                                – Aaron Stevens
                                yesterday




                                $begingroup$
                                The problem isn't poorly formulated. Just before and just after the collision momentum has to be conserved. If there are external forces then you just have to look just before and just after. Momentum will not be lost due to the collision, and it seems like the OP is interested in the collision, not unspecified external forces that aren't involved with the collision.
                                $endgroup$
                                – Aaron Stevens
                                yesterday












                                $begingroup$
                                @AaronStevens The problem is badly formulated in the sense that it imposes two assumptions that contradict each other (given that there are no external forces), namely "objects merge into one" and "all the energy gets converted into speed."
                                $endgroup$
                                – Andreas Blass
                                yesterday




                                $begingroup$
                                @AaronStevens The problem is badly formulated in the sense that it imposes two assumptions that contradict each other (given that there are no external forces), namely "objects merge into one" and "all the energy gets converted into speed."
                                $endgroup$
                                – Andreas Blass
                                yesterday












                                $begingroup$
                                No... The OP is incorrectly assuming that energy is conserved when the objects stick together. The "problem" (or you could say system) is just a perfectly inelastic collision where the objects stick together. Any incorrect assumptions come from the OP, not from the "problem" or system.
                                $endgroup$
                                – Aaron Stevens
                                yesterday




                                $begingroup$
                                No... The OP is incorrectly assuming that energy is conserved when the objects stick together. The "problem" (or you could say system) is just a perfectly inelastic collision where the objects stick together. Any incorrect assumptions come from the OP, not from the "problem" or system.
                                $endgroup$
                                – Aaron Stevens
                                yesterday

















                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466744%2fwhy-does-energy-conservation-give-me-the-wrong-answer-in-this-inelastic-collisio%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                                Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                                Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?