If I can solve Sudoku, can I solve the Travelling Salesman Problem (TSP)? If so, how?When can a greedy algorithm solve the coin change problem?Finding the subset of $S$ that sums up to $k$ using a black box in $O(n)$ timeCan Euclidean TSP be exactly solved in time better than (sym)metric TSP?How to find partition set of a Partition Problem using its decision problemHow can we design an efficient warehouse management program?Finding vertices of a maximum clique in polynomial timeIs this an instance of a well-known problem?Is any sudoku solver an SAT solver?Applying a permutation on a sequence with multiplicationSolve this integer program (problem: Travelling salesman problem)

Print a physical multiplication table

Brake pads destroying wheels

Relation between independence and correlation of uniform random variables

Turning a hard to access nut?

Asserting that Atheism and Theism are both faith based positions

A Ri-diddley-iley Riddle

Are dual Irish/British citizens bound by the 90/180 day rule when travelling in the EU after Brexit?

Can a wizard cast a spell during their first turn of combat if they initiated combat by releasing a readied spell?

What can I do if I am asked to learn different programming languages very frequently?

What is the English word for a graduation award?

Would it be believable to defy demographics in a story?

What is the term when voters “dishonestly” choose something that they do not want to choose?

Help rendering a complicated sum/product formula

In what cases must I use 了 and in what cases not?

Using Past-Perfect interchangeably with the Past Continuous

When did antialiasing start being available?

Do US professors/group leaders only get a salary, but no group budget?

Maths symbols and unicode-math input inside siunitx commands

What (if any) is the reason to buy in small local stores?

Is there a term for accumulated dirt on the outside of your hands and feet?

I seem to dance, I am not a dancer. Who am I?

Bash - pair each line of file

Worshiping one God at a time?

If "dar" means "to give", what does "daros" mean?



If I can solve Sudoku, can I solve the Travelling Salesman Problem (TSP)? If so, how?


When can a greedy algorithm solve the coin change problem?Finding the subset of $S$ that sums up to $k$ using a black box in $O(n)$ timeCan Euclidean TSP be exactly solved in time better than (sym)metric TSP?How to find partition set of a Partition Problem using its decision problemHow can we design an efficient warehouse management program?Finding vertices of a maximum clique in polynomial timeIs this an instance of a well-known problem?Is any sudoku solver an SAT solver?Applying a permutation on a sequence with multiplicationSolve this integer program (problem: Travelling salesman problem)













21












$begingroup$


Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.










share|cite|improve this question









New contributor




Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    2 days ago










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    2 days ago















21












$begingroup$


Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.










share|cite|improve this question









New contributor




Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    2 days ago










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    2 days ago













21












21








21


5



$begingroup$


Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.










share|cite|improve this question









New contributor




Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Let us say there is a program such that if you give a partially filled Sudoku of any size it gives you corresponding completed Sudoku.



Can you treat this program as a black box and use this to solve TSP? I mean is there a way to represent TSP problem as partially filled Sudoku, so that if I give you the answer of that Sudoku, you can tell the solution for TSP in polynomial time?



If yes, how? how do you represent TSP as a partially filled Sudoku and interpret corresponding filled Sudoku for the result.







algorithms np-complete reductions traveling-salesman sudoku






share|cite|improve this question









New contributor




Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited yesterday









Rodrigo de Azevedo

702615




702615






New contributor




Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Chakrapani N RaoChakrapani N Rao

11418




11418




New contributor




Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Chakrapani N Rao is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    2 days ago










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    2 days ago












  • 1




    $begingroup$
    This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
    $endgroup$
    – C. Windolf
    2 days ago










  • $begingroup$
    @C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
    $endgroup$
    – David Richerby
    2 days ago







1




1




$begingroup$
This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
$endgroup$
– C. Windolf
2 days ago




$begingroup$
This paper claims to give a constructive reduction from Sudoku to Hamiltonian cycle problem: sciencedirect.com/science/article/pii/S097286001630038X
$endgroup$
– C. Windolf
2 days ago












$begingroup$
@C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
$endgroup$
– David Richerby
2 days ago




$begingroup$
@C.Windolf The question is asking for the other direction. (Indeed, there's a deleted answer that made the same mistake and cited the same paper.)
$endgroup$
– David Richerby
2 days ago










2 Answers
2






active

oldest

votes


















31












$begingroup$

For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
    $endgroup$
    – Chakrapani N Rao
    2 days ago






  • 2




    $begingroup$
    @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
    $endgroup$
    – D.W.
    2 days ago






  • 8




    $begingroup$
    @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
    $endgroup$
    – David Richerby
    2 days ago






  • 8




    $begingroup$
    @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
    $endgroup$
    – David Richerby
    2 days ago






  • 2




    $begingroup$
    @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
    $endgroup$
    – D.W.
    yesterday



















22












$begingroup$

It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






share|cite|improve this answer








New contributor




rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "419"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Chakrapani N Rao is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105618%2fif-i-can-solve-sudoku-can-i-solve-the-travelling-salesman-problem-tsp-if-so%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    31












    $begingroup$

    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      2 days ago






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      2 days ago






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      yesterday
















    31












    $begingroup$

    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      2 days ago






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      2 days ago






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      yesterday














    31












    31








    31





    $begingroup$

    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.






    share|cite|improve this answer











    $endgroup$



    For 9x9 Sudoku, no. It is finite so can be solved in $O(1)$ time.



    But if you had a solver for $n^2 times n^2$ Sudoku, that worked for all $n$ and all possible partial boards, and ran in polynomial time, then yes, that could be used to solve TSP in polynomial time, as completing a $n^2 times n^2$ Sudoku is NP-complete.



    The proof of NP-completeness works by reducing from some NP-complete problem R to Sudoku; then because R is NP-complete, you can reduce from TSP to R (that follows from the definition of NP-completeness); and chaining those reductions gives you a way to use the Sudoku solver to solve TSP.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 15 hours ago

























    answered 2 days ago









    D.W.D.W.

    102k12127290




    102k12127290







    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      2 days ago






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      2 days ago






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      yesterday













    • 1




      $begingroup$
      Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
      $endgroup$
      – Chakrapani N Rao
      2 days ago






    • 2




      $begingroup$
      @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
      $endgroup$
      – D.W.
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
      $endgroup$
      – David Richerby
      2 days ago






    • 8




      $begingroup$
      @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
      $endgroup$
      – David Richerby
      2 days ago






    • 2




      $begingroup$
      @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
      $endgroup$
      – D.W.
      yesterday








    1




    1




    $begingroup$
    Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
    $endgroup$
    – Chakrapani N Rao
    2 days ago




    $begingroup$
    Could you please explain how? Yes lets assume I have general sudoku solver which acts as a black box. So how can you use it? How do you represent TSP as a partially filled Sudoku
    $endgroup$
    – Chakrapani N Rao
    2 days ago




    2




    2




    $begingroup$
    @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
    $endgroup$
    – D.W.
    2 days ago




    $begingroup$
    @ChakrapaniNRao, see updated answer. Yes, I understand it is a black box. To work out the details, find the proof of NP-completeness for Sudoku and understand how the reduction works.
    $endgroup$
    – D.W.
    2 days ago




    8




    8




    $begingroup$
    @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
    $endgroup$
    – David Richerby
    2 days ago




    $begingroup$
    @ChakrapaniNRao It doesn't answer the question completely but the full answer would be ridiculously long, be full of intricate details and wouldn't give you any more enlightenment than the sketch here. It's possible that a reduction of some NP-complete problem to $n^2times n^2$ sudoku might be interesting but, unless the proof that sudoku is NP-complete was actually by reduction from TSP (unlikely), the answer is still going to end "and then chain those two reductions together".
    $endgroup$
    – David Richerby
    2 days ago




    8




    8




    $begingroup$
    @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
    $endgroup$
    – David Richerby
    2 days ago




    $begingroup$
    @ChakrapaniNRao You are asking how to solve problem X using a black box for problem Y. That is literally asking for a reduction. That's what "reduction" means. And, as this answer explains, the answer to your yes/no question is yes.
    $endgroup$
    – David Richerby
    2 days ago




    2




    2




    $begingroup$
    @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
    $endgroup$
    – D.W.
    yesterday





    $begingroup$
    @SolomonUcko, well, no, not necessarily. The questions asks: if we have a Sudoku solver, can we use it to solve TSP? The answer is yes, we can. I explain how. This will give you a way to solve TSP about as fast as the Sudoku solver will solve Sudoku. If the Sudoku solver runs in polynomial time, this will give you a way to solve TSP in polynomial time. If the Sudoku solver runs in subexponential time, this will give you a way to solve TSP in subexponential time. And so on.
    $endgroup$
    – D.W.
    yesterday












    22












    $begingroup$

    It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






    share|cite|improve this answer








    New contributor




    rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$

















      22












      $begingroup$

      It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






      share|cite|improve this answer








      New contributor




      rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$















        22












        22








        22





        $begingroup$

        It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.






        share|cite|improve this answer








        New contributor




        rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$



        It is indeed possible to use a general Sudoku solver to solve instances of TSP, and if this solver takes polynomial time then the whole process will as well (in complexity terminology, there is a polynomial-time reduction from TSP to Sudoku). This is because Sudoku is NP-complete and TSP is in NP. But as is usually the case in this area, looking at the details of the reduction isn't particularly illuminating. If you want, you can piece it together by using the simple reduction from Latin square completion to Sudoku here, the reduction from triangulating uniform tripartite graphs to Latin square completion here, the reduction from 3SAT to triangulation here, and a formulation of TSP as a 3SAT problem. However, if you want to understand the idea behind reducing from Sudoku to TSP I think you would be better off studying Cook's theorem (showing that SAT is NP-complete) and a couple of simple reductions from 3SAT (e.g. to 3-dimensional matching) and being satisfied in the knowledge that the TSP-Sudoku reduction is just the same kind of thing but longer and more fiddly.







        share|cite|improve this answer








        New contributor




        rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        share|cite|improve this answer



        share|cite|improve this answer






        New contributor




        rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        answered 2 days ago









        rlmsrlms

        32114




        32114




        New contributor




        rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.





        New contributor





        rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        rlms is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.




















            Chakrapani N Rao is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Chakrapani N Rao is a new contributor. Be nice, and check out our Code of Conduct.












            Chakrapani N Rao is a new contributor. Be nice, and check out our Code of Conduct.











            Chakrapani N Rao is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Computer Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105618%2fif-i-can-solve-sudoku-can-i-solve-the-travelling-salesman-problem-tsp-if-so%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?