99% on the first epoch2019 Community Moderator ElectionKeras Callback example for saving a model after every epoch?Simple prediction with KerasIn which epoch should i stop the training to avoid overfittingConfusion regarding epoch and accuracyWhat is the logic of the epoch?Value error in Merging two different models in kerasSteps taking too long to completeIN CIFAR 10 DATASETWhat happened to the accuracy before and after 75th epoch. Why its unstable at first, then stepped up after the 75th epoch?
apt-get update is failing in debian
What is the opposite of 'gravitas'?
Implement the Thanos sorting algorithm
Hide Select Output from T-SQL
How was Earth single-handedly capable of creating 3 of the 4 gods of chaos?
At which point does a character regain all their Hit Dice?
Is it correct to write "is not focus on"?
Was the picture area of a CRT a parallelogram (instead of a true rectangle)?
Efficiently merge handle parallel feature branches in SFDX
Minimal reference content
Print name if parameter passed to function
Will it be accepted, if there is no ''Main Character" stereotype?
Irreducibility of a simple polynomial
Personal Teleportation as a Weapon
Your magic is very sketchy
What is the intuitive meaning of having a linear relationship between the logs of two variables?
Can criminal fraud exist without damages?
Valid Badminton Score?
Bash method for viewing beginning and end of file
How can a jailer prevent the Forge Cleric's Artisan's Blessing from being used?
Cynical novel that describes an America ruled by the media, arms manufacturers, and ethnic figureheads
Can I Retrieve Email Addresses from BCC?
The plural of 'stomach"
Everything Bob says is false. How does he get people to trust him?
99% on the first epoch
2019 Community Moderator ElectionKeras Callback example for saving a model after every epoch?Simple prediction with KerasIn which epoch should i stop the training to avoid overfittingConfusion regarding epoch and accuracyWhat is the logic of the epoch?Value error in Merging two different models in kerasSteps taking too long to completeIN CIFAR 10 DATASETWhat happened to the accuracy before and after 75th epoch. Why its unstable at first, then stepped up after the 75th epoch?
$begingroup$
I am working with time-series data and I am trying to classify the Fault happening in the system. The problem is no matter what I try so far, I get 99.79 validation accuracy on the very first epoch. It changes to 99.90 after couple of training runs but nevertheless, it's too good to be true. I have tried the KFold approach and custom metrics (F1) but result is still the same. I use SMOTE for oversampling, as one of the classes (0) is prevailing too much compared to other ones.
My main function:
output_nfs = data_normalization(nf_data.iloc[:, 1:28], 'PCA') #Normalization via StandardScaler
output_afs = data_normalization(af_data.iloc[:, 1:28], 'PCA')
output_nfs ['Fault'] = nf_data['Fault'].values
output_afs ['Fault'] = af_data['Fault'].values
output_nfs_rec_array = output_nfs.to_records (index = False)
output_afs_rec_array = output_afs.to_records (index = False)
final_data = np.concatenate ([output_nfs_rec_array, output_afs_rec_array])
np.random.shuffle(final_data)
y=final_data ['Fault'] #target
X=rf.drop_fields(final_data, ['Fault'], False).view (np.float64).reshape(len(final_data), len(final_data.dtype)-1) #Actual datapoints
y_new = [] #Combine all the faults into 3 separate categories: no faults (0), electrical (1), mechanical (2)
for i in range(len(y)):
if y[i]==0:
y_new.append(0)
elif (y[i] == 188)|(y[i] ==176)|(y[i] == 315)|(y[i] == 485)|(y[i] == 286)|(y[i] ==707)|
(y[i] == 959)|(y[i] ==958)|(y[i] ==817)|(y[i] == 187)|(y[i] == 489)|(y[i] == 632)|
(y[i] == 102)|(y[i] ==648)|(y[i] ==687)|(y[i] == 935)|(y[i] == 332)|(y[i] == 846)|
(y[i] == 944)|(y[i] == 254)|(y[i] == 181)|(y[i] == 317):
y_new.append(1) #electrical
elif (y[i]==604)|(y[i]==603)|(y[i]==958)|(y[i]==154)|(y[i]==162)|
(y[i]==165)|(y[i]==512)|(y[i]==948)|(y[i]==151)|(y[i]==163)|(y[i]==296)|
(y[i]==734)|(y[i]==844)|(y[i]==191)|(y[i]==560)|(y[i]==297)|(y[i]==504)|(y[i]==735):
y_new.append(2) #mechanical
y = y_new
y=np.array(y,dtype=int)
from sklearn.model_selection import KFold
n_folds = 10
kfold = KFold(n_folds, True, 1)
scores, members = list(), list()
import keras_metrics as km
from keras.layers import Dropout
labels = ['no faults', 'electrical fault', 'mechanical fault']
def evaluate_model(X_train, y_train, X_test, y_test):
trainy_enc=to_categorical(y_train)
testy_enc=to_categorical(y_test)
early_stopping_monitor = EarlyStopping(monitor='val_loss', patience=3)
model = Sequential()
n_cols = X_train.shape[1]
model.add (Dense (35, activation = 'relu', input_shape = (n_cols,)))
model.add(Dropout(0.5))
model.add (Dense (10, activation = 'relu'))
model.add(Dropout(0.5))
model.add (Dense (3, activation = 'softmax'))
model.compile (loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['acc'])
model.fit (X_train, trainy_enc, batch_size=10, shuffle=True, epochs= 100,
validation_data=(X_test,testy_enc), callbacks = [early_stopping_monitor], verbose = 1)
# evaluate the model
_, test_acc = model.evaluate(X_test, testy_enc, verbose=1)
return model, test_acc
for train_iX, test_iX in kfold.split(X):
X_train, y_train = X[train_iX], y[train_iX]
X_test, y_test = X[test_iX], y[test_iX]
#Class imbalance is too severe. No Fault prevails. Using smote to balance out electrical and mechanical faults
from imblearn.over_sampling import SMOTE
sm = SMOTE (random_state = 12)
X_train,y_train = sm.fit_resample(X_train,y_train)
X_train, y_train = utils.shuffle(X_train, y_train, random_state=42)
X_train, X_test = feature_selection (X_train, X_test, None, 'PCA', None)
model, test_acc = evaluate_model(X_train, y_train, X_test, y_test)
scores.append(test_acc)
members.append(model)
My PCA function is the following:
pca = PCA (0.95)
pca.fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
return X_train_pca, X_test_pca
Any suggestions will be appreciated.
python keras time-series overfitting
New contributor
$endgroup$
add a comment |
$begingroup$
I am working with time-series data and I am trying to classify the Fault happening in the system. The problem is no matter what I try so far, I get 99.79 validation accuracy on the very first epoch. It changes to 99.90 after couple of training runs but nevertheless, it's too good to be true. I have tried the KFold approach and custom metrics (F1) but result is still the same. I use SMOTE for oversampling, as one of the classes (0) is prevailing too much compared to other ones.
My main function:
output_nfs = data_normalization(nf_data.iloc[:, 1:28], 'PCA') #Normalization via StandardScaler
output_afs = data_normalization(af_data.iloc[:, 1:28], 'PCA')
output_nfs ['Fault'] = nf_data['Fault'].values
output_afs ['Fault'] = af_data['Fault'].values
output_nfs_rec_array = output_nfs.to_records (index = False)
output_afs_rec_array = output_afs.to_records (index = False)
final_data = np.concatenate ([output_nfs_rec_array, output_afs_rec_array])
np.random.shuffle(final_data)
y=final_data ['Fault'] #target
X=rf.drop_fields(final_data, ['Fault'], False).view (np.float64).reshape(len(final_data), len(final_data.dtype)-1) #Actual datapoints
y_new = [] #Combine all the faults into 3 separate categories: no faults (0), electrical (1), mechanical (2)
for i in range(len(y)):
if y[i]==0:
y_new.append(0)
elif (y[i] == 188)|(y[i] ==176)|(y[i] == 315)|(y[i] == 485)|(y[i] == 286)|(y[i] ==707)|
(y[i] == 959)|(y[i] ==958)|(y[i] ==817)|(y[i] == 187)|(y[i] == 489)|(y[i] == 632)|
(y[i] == 102)|(y[i] ==648)|(y[i] ==687)|(y[i] == 935)|(y[i] == 332)|(y[i] == 846)|
(y[i] == 944)|(y[i] == 254)|(y[i] == 181)|(y[i] == 317):
y_new.append(1) #electrical
elif (y[i]==604)|(y[i]==603)|(y[i]==958)|(y[i]==154)|(y[i]==162)|
(y[i]==165)|(y[i]==512)|(y[i]==948)|(y[i]==151)|(y[i]==163)|(y[i]==296)|
(y[i]==734)|(y[i]==844)|(y[i]==191)|(y[i]==560)|(y[i]==297)|(y[i]==504)|(y[i]==735):
y_new.append(2) #mechanical
y = y_new
y=np.array(y,dtype=int)
from sklearn.model_selection import KFold
n_folds = 10
kfold = KFold(n_folds, True, 1)
scores, members = list(), list()
import keras_metrics as km
from keras.layers import Dropout
labels = ['no faults', 'electrical fault', 'mechanical fault']
def evaluate_model(X_train, y_train, X_test, y_test):
trainy_enc=to_categorical(y_train)
testy_enc=to_categorical(y_test)
early_stopping_monitor = EarlyStopping(monitor='val_loss', patience=3)
model = Sequential()
n_cols = X_train.shape[1]
model.add (Dense (35, activation = 'relu', input_shape = (n_cols,)))
model.add(Dropout(0.5))
model.add (Dense (10, activation = 'relu'))
model.add(Dropout(0.5))
model.add (Dense (3, activation = 'softmax'))
model.compile (loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['acc'])
model.fit (X_train, trainy_enc, batch_size=10, shuffle=True, epochs= 100,
validation_data=(X_test,testy_enc), callbacks = [early_stopping_monitor], verbose = 1)
# evaluate the model
_, test_acc = model.evaluate(X_test, testy_enc, verbose=1)
return model, test_acc
for train_iX, test_iX in kfold.split(X):
X_train, y_train = X[train_iX], y[train_iX]
X_test, y_test = X[test_iX], y[test_iX]
#Class imbalance is too severe. No Fault prevails. Using smote to balance out electrical and mechanical faults
from imblearn.over_sampling import SMOTE
sm = SMOTE (random_state = 12)
X_train,y_train = sm.fit_resample(X_train,y_train)
X_train, y_train = utils.shuffle(X_train, y_train, random_state=42)
X_train, X_test = feature_selection (X_train, X_test, None, 'PCA', None)
model, test_acc = evaluate_model(X_train, y_train, X_test, y_test)
scores.append(test_acc)
members.append(model)
My PCA function is the following:
pca = PCA (0.95)
pca.fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
return X_train_pca, X_test_pca
Any suggestions will be appreciated.
python keras time-series overfitting
New contributor
$endgroup$
$begingroup$
Could you provide more information on your dataset? You are trying to resolve the problem by SMOTE. How unbalanced is your data set? The results suggest a huge imbalance in your data set.
$endgroup$
– MachineLearner
Mar 22 at 9:22
$begingroup$
Yes. I have a time-series dataset. I have constructed two separate datasets: no faults and faulty ones. The imbalance is following: No fault (0) is 43819 datapoints, 1 (electrical faults) is 581 datapoints, 2 (mechanical faults) is 47 datapoints. I balance out using SMOTE
$endgroup$
– eemamedo
Mar 22 at 13:35
add a comment |
$begingroup$
I am working with time-series data and I am trying to classify the Fault happening in the system. The problem is no matter what I try so far, I get 99.79 validation accuracy on the very first epoch. It changes to 99.90 after couple of training runs but nevertheless, it's too good to be true. I have tried the KFold approach and custom metrics (F1) but result is still the same. I use SMOTE for oversampling, as one of the classes (0) is prevailing too much compared to other ones.
My main function:
output_nfs = data_normalization(nf_data.iloc[:, 1:28], 'PCA') #Normalization via StandardScaler
output_afs = data_normalization(af_data.iloc[:, 1:28], 'PCA')
output_nfs ['Fault'] = nf_data['Fault'].values
output_afs ['Fault'] = af_data['Fault'].values
output_nfs_rec_array = output_nfs.to_records (index = False)
output_afs_rec_array = output_afs.to_records (index = False)
final_data = np.concatenate ([output_nfs_rec_array, output_afs_rec_array])
np.random.shuffle(final_data)
y=final_data ['Fault'] #target
X=rf.drop_fields(final_data, ['Fault'], False).view (np.float64).reshape(len(final_data), len(final_data.dtype)-1) #Actual datapoints
y_new = [] #Combine all the faults into 3 separate categories: no faults (0), electrical (1), mechanical (2)
for i in range(len(y)):
if y[i]==0:
y_new.append(0)
elif (y[i] == 188)|(y[i] ==176)|(y[i] == 315)|(y[i] == 485)|(y[i] == 286)|(y[i] ==707)|
(y[i] == 959)|(y[i] ==958)|(y[i] ==817)|(y[i] == 187)|(y[i] == 489)|(y[i] == 632)|
(y[i] == 102)|(y[i] ==648)|(y[i] ==687)|(y[i] == 935)|(y[i] == 332)|(y[i] == 846)|
(y[i] == 944)|(y[i] == 254)|(y[i] == 181)|(y[i] == 317):
y_new.append(1) #electrical
elif (y[i]==604)|(y[i]==603)|(y[i]==958)|(y[i]==154)|(y[i]==162)|
(y[i]==165)|(y[i]==512)|(y[i]==948)|(y[i]==151)|(y[i]==163)|(y[i]==296)|
(y[i]==734)|(y[i]==844)|(y[i]==191)|(y[i]==560)|(y[i]==297)|(y[i]==504)|(y[i]==735):
y_new.append(2) #mechanical
y = y_new
y=np.array(y,dtype=int)
from sklearn.model_selection import KFold
n_folds = 10
kfold = KFold(n_folds, True, 1)
scores, members = list(), list()
import keras_metrics as km
from keras.layers import Dropout
labels = ['no faults', 'electrical fault', 'mechanical fault']
def evaluate_model(X_train, y_train, X_test, y_test):
trainy_enc=to_categorical(y_train)
testy_enc=to_categorical(y_test)
early_stopping_monitor = EarlyStopping(monitor='val_loss', patience=3)
model = Sequential()
n_cols = X_train.shape[1]
model.add (Dense (35, activation = 'relu', input_shape = (n_cols,)))
model.add(Dropout(0.5))
model.add (Dense (10, activation = 'relu'))
model.add(Dropout(0.5))
model.add (Dense (3, activation = 'softmax'))
model.compile (loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['acc'])
model.fit (X_train, trainy_enc, batch_size=10, shuffle=True, epochs= 100,
validation_data=(X_test,testy_enc), callbacks = [early_stopping_monitor], verbose = 1)
# evaluate the model
_, test_acc = model.evaluate(X_test, testy_enc, verbose=1)
return model, test_acc
for train_iX, test_iX in kfold.split(X):
X_train, y_train = X[train_iX], y[train_iX]
X_test, y_test = X[test_iX], y[test_iX]
#Class imbalance is too severe. No Fault prevails. Using smote to balance out electrical and mechanical faults
from imblearn.over_sampling import SMOTE
sm = SMOTE (random_state = 12)
X_train,y_train = sm.fit_resample(X_train,y_train)
X_train, y_train = utils.shuffle(X_train, y_train, random_state=42)
X_train, X_test = feature_selection (X_train, X_test, None, 'PCA', None)
model, test_acc = evaluate_model(X_train, y_train, X_test, y_test)
scores.append(test_acc)
members.append(model)
My PCA function is the following:
pca = PCA (0.95)
pca.fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
return X_train_pca, X_test_pca
Any suggestions will be appreciated.
python keras time-series overfitting
New contributor
$endgroup$
I am working with time-series data and I am trying to classify the Fault happening in the system. The problem is no matter what I try so far, I get 99.79 validation accuracy on the very first epoch. It changes to 99.90 after couple of training runs but nevertheless, it's too good to be true. I have tried the KFold approach and custom metrics (F1) but result is still the same. I use SMOTE for oversampling, as one of the classes (0) is prevailing too much compared to other ones.
My main function:
output_nfs = data_normalization(nf_data.iloc[:, 1:28], 'PCA') #Normalization via StandardScaler
output_afs = data_normalization(af_data.iloc[:, 1:28], 'PCA')
output_nfs ['Fault'] = nf_data['Fault'].values
output_afs ['Fault'] = af_data['Fault'].values
output_nfs_rec_array = output_nfs.to_records (index = False)
output_afs_rec_array = output_afs.to_records (index = False)
final_data = np.concatenate ([output_nfs_rec_array, output_afs_rec_array])
np.random.shuffle(final_data)
y=final_data ['Fault'] #target
X=rf.drop_fields(final_data, ['Fault'], False).view (np.float64).reshape(len(final_data), len(final_data.dtype)-1) #Actual datapoints
y_new = [] #Combine all the faults into 3 separate categories: no faults (0), electrical (1), mechanical (2)
for i in range(len(y)):
if y[i]==0:
y_new.append(0)
elif (y[i] == 188)|(y[i] ==176)|(y[i] == 315)|(y[i] == 485)|(y[i] == 286)|(y[i] ==707)|
(y[i] == 959)|(y[i] ==958)|(y[i] ==817)|(y[i] == 187)|(y[i] == 489)|(y[i] == 632)|
(y[i] == 102)|(y[i] ==648)|(y[i] ==687)|(y[i] == 935)|(y[i] == 332)|(y[i] == 846)|
(y[i] == 944)|(y[i] == 254)|(y[i] == 181)|(y[i] == 317):
y_new.append(1) #electrical
elif (y[i]==604)|(y[i]==603)|(y[i]==958)|(y[i]==154)|(y[i]==162)|
(y[i]==165)|(y[i]==512)|(y[i]==948)|(y[i]==151)|(y[i]==163)|(y[i]==296)|
(y[i]==734)|(y[i]==844)|(y[i]==191)|(y[i]==560)|(y[i]==297)|(y[i]==504)|(y[i]==735):
y_new.append(2) #mechanical
y = y_new
y=np.array(y,dtype=int)
from sklearn.model_selection import KFold
n_folds = 10
kfold = KFold(n_folds, True, 1)
scores, members = list(), list()
import keras_metrics as km
from keras.layers import Dropout
labels = ['no faults', 'electrical fault', 'mechanical fault']
def evaluate_model(X_train, y_train, X_test, y_test):
trainy_enc=to_categorical(y_train)
testy_enc=to_categorical(y_test)
early_stopping_monitor = EarlyStopping(monitor='val_loss', patience=3)
model = Sequential()
n_cols = X_train.shape[1]
model.add (Dense (35, activation = 'relu', input_shape = (n_cols,)))
model.add(Dropout(0.5))
model.add (Dense (10, activation = 'relu'))
model.add(Dropout(0.5))
model.add (Dense (3, activation = 'softmax'))
model.compile (loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['acc'])
model.fit (X_train, trainy_enc, batch_size=10, shuffle=True, epochs= 100,
validation_data=(X_test,testy_enc), callbacks = [early_stopping_monitor], verbose = 1)
# evaluate the model
_, test_acc = model.evaluate(X_test, testy_enc, verbose=1)
return model, test_acc
for train_iX, test_iX in kfold.split(X):
X_train, y_train = X[train_iX], y[train_iX]
X_test, y_test = X[test_iX], y[test_iX]
#Class imbalance is too severe. No Fault prevails. Using smote to balance out electrical and mechanical faults
from imblearn.over_sampling import SMOTE
sm = SMOTE (random_state = 12)
X_train,y_train = sm.fit_resample(X_train,y_train)
X_train, y_train = utils.shuffle(X_train, y_train, random_state=42)
X_train, X_test = feature_selection (X_train, X_test, None, 'PCA', None)
model, test_acc = evaluate_model(X_train, y_train, X_test, y_test)
scores.append(test_acc)
members.append(model)
My PCA function is the following:
pca = PCA (0.95)
pca.fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
return X_train_pca, X_test_pca
Any suggestions will be appreciated.
python keras time-series overfitting
python keras time-series overfitting
New contributor
New contributor
edited Mar 21 at 18:48
eemamedo
New contributor
asked Mar 21 at 18:39
eemamedoeemamedo
62
62
New contributor
New contributor
$begingroup$
Could you provide more information on your dataset? You are trying to resolve the problem by SMOTE. How unbalanced is your data set? The results suggest a huge imbalance in your data set.
$endgroup$
– MachineLearner
Mar 22 at 9:22
$begingroup$
Yes. I have a time-series dataset. I have constructed two separate datasets: no faults and faulty ones. The imbalance is following: No fault (0) is 43819 datapoints, 1 (electrical faults) is 581 datapoints, 2 (mechanical faults) is 47 datapoints. I balance out using SMOTE
$endgroup$
– eemamedo
Mar 22 at 13:35
add a comment |
$begingroup$
Could you provide more information on your dataset? You are trying to resolve the problem by SMOTE. How unbalanced is your data set? The results suggest a huge imbalance in your data set.
$endgroup$
– MachineLearner
Mar 22 at 9:22
$begingroup$
Yes. I have a time-series dataset. I have constructed two separate datasets: no faults and faulty ones. The imbalance is following: No fault (0) is 43819 datapoints, 1 (electrical faults) is 581 datapoints, 2 (mechanical faults) is 47 datapoints. I balance out using SMOTE
$endgroup$
– eemamedo
Mar 22 at 13:35
$begingroup$
Could you provide more information on your dataset? You are trying to resolve the problem by SMOTE. How unbalanced is your data set? The results suggest a huge imbalance in your data set.
$endgroup$
– MachineLearner
Mar 22 at 9:22
$begingroup$
Could you provide more information on your dataset? You are trying to resolve the problem by SMOTE. How unbalanced is your data set? The results suggest a huge imbalance in your data set.
$endgroup$
– MachineLearner
Mar 22 at 9:22
$begingroup$
Yes. I have a time-series dataset. I have constructed two separate datasets: no faults and faulty ones. The imbalance is following: No fault (0) is 43819 datapoints, 1 (electrical faults) is 581 datapoints, 2 (mechanical faults) is 47 datapoints. I balance out using SMOTE
$endgroup$
– eemamedo
Mar 22 at 13:35
$begingroup$
Yes. I have a time-series dataset. I have constructed two separate datasets: no faults and faulty ones. The imbalance is following: No fault (0) is 43819 datapoints, 1 (electrical faults) is 581 datapoints, 2 (mechanical faults) is 47 datapoints. I balance out using SMOTE
$endgroup$
– eemamedo
Mar 22 at 13:35
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
eemamedo is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47754%2f99-on-the-first-epoch%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
eemamedo is a new contributor. Be nice, and check out our Code of Conduct.
eemamedo is a new contributor. Be nice, and check out our Code of Conduct.
eemamedo is a new contributor. Be nice, and check out our Code of Conduct.
eemamedo is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47754%2f99-on-the-first-epoch%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Could you provide more information on your dataset? You are trying to resolve the problem by SMOTE. How unbalanced is your data set? The results suggest a huge imbalance in your data set.
$endgroup$
– MachineLearner
Mar 22 at 9:22
$begingroup$
Yes. I have a time-series dataset. I have constructed two separate datasets: no faults and faulty ones. The imbalance is following: No fault (0) is 43819 datapoints, 1 (electrical faults) is 581 datapoints, 2 (mechanical faults) is 47 datapoints. I balance out using SMOTE
$endgroup$
– eemamedo
Mar 22 at 13:35