Advice on dealing with very large datasets - HDF5, Python2019 Community Moderator ElectionHow to deal with version control of large amounts of (binary) dataTransposing Every nth row to column in a large datasetDealing with big dataTrajectory data mining and pattern recognition using ORB-SLAM and KNN-DTWHow do I represent a hidden markov model in data structure?Working with large datasets pythonRunning SQL-like queries over large schemaless JSON dataset in the cloud?Python ,R or matlab for programming very large data set?Dealing with population instabilityMerging dataframes in Pandas is taking a surprisingly long time

Everything Bob says is false. How does he get people to trust him?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Irreducibility of a simple polynomial

Star/Wye electrical connection math symbol

Go Pregnant or Go Home

apt-get update is failing in debian

Coordinate position not precise

Teaching indefinite integrals that require special-casing

Why "be dealt cards" rather than "be dealing cards"?

Modify casing of marked letters

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

Why does John Bercow say “unlock” after reading out the results of a vote?

What would be the benefits of having both a state and local currencies?

How do I keep an essay about "feeling flat" from feeling flat?

Can criminal fraud exist without damages?

Cynical novel that describes an America ruled by the media, arms manufacturers, and ethnic figureheads

Is there an Impartial Brexit Deal comparison site?

What would happen if the UK refused to take part in EU Parliamentary elections?

What to do with wrong results in talks?

How does residential electricity work?

Was Spock the First Vulcan in Starfleet?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Print name if parameter passed to function

Can a monster with multiattack use this ability if they are missing a limb?



Advice on dealing with very large datasets - HDF5, Python



2019 Community Moderator ElectionHow to deal with version control of large amounts of (binary) dataTransposing Every nth row to column in a large datasetDealing with big dataTrajectory data mining and pattern recognition using ORB-SLAM and KNN-DTWHow do I represent a hidden markov model in data structure?Working with large datasets pythonRunning SQL-like queries over large schemaless JSON dataset in the cloud?Python ,R or matlab for programming very large data set?Dealing with population instabilityMerging dataframes in Pandas is taking a surprisingly long time










1












$begingroup$


I've recently started working on an application for visualization of really big datasets. While reading online it became apparent that most people use HDF5 for storing big, multi-dimensional datasets as it offers the versatility to allow many dimensions, has no file size limits and is transferable between OSs.



My question is how to best deal with very large files. I am working with datasets that have 3-dimensions, all of which have large number of components (example size: 62,500 x 500,000 x 3,500, 32-bit int) which is a little problematic. HDF5 is theoretically able to deal with this, however, I've discovered it is really slow to write the data into the file and subsequently slow to retrieve it. Because the number of items is very large, data must be compressed otherwise it becomes insanely large on the HDD, however compression requires chunking and chunking is quite tricky to get right... I receive my data in (1 x 500,000 x 3500) chunks so it makes sense to write it one row at a time so with those dimensions and I ensure that chunks have dimensions (1 x n_values x 3500) to speed-up writing and data retrieval and have relatively small size (< 1Mb) for quick compression/decompression.



Does anyone have any experience in how to efficiently write to HDF5 files when the size of each dimension is v. large? Are there any tricks that could help?



I should also mention that I mostly work in Python, however, would be happy to do it in another language. I've tried increasing the chunk cache via the h5py_cache library.










share|improve this question







New contributor




munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    1












    $begingroup$


    I've recently started working on an application for visualization of really big datasets. While reading online it became apparent that most people use HDF5 for storing big, multi-dimensional datasets as it offers the versatility to allow many dimensions, has no file size limits and is transferable between OSs.



    My question is how to best deal with very large files. I am working with datasets that have 3-dimensions, all of which have large number of components (example size: 62,500 x 500,000 x 3,500, 32-bit int) which is a little problematic. HDF5 is theoretically able to deal with this, however, I've discovered it is really slow to write the data into the file and subsequently slow to retrieve it. Because the number of items is very large, data must be compressed otherwise it becomes insanely large on the HDD, however compression requires chunking and chunking is quite tricky to get right... I receive my data in (1 x 500,000 x 3500) chunks so it makes sense to write it one row at a time so with those dimensions and I ensure that chunks have dimensions (1 x n_values x 3500) to speed-up writing and data retrieval and have relatively small size (< 1Mb) for quick compression/decompression.



    Does anyone have any experience in how to efficiently write to HDF5 files when the size of each dimension is v. large? Are there any tricks that could help?



    I should also mention that I mostly work in Python, however, would be happy to do it in another language. I've tried increasing the chunk cache via the h5py_cache library.










    share|improve this question







    New contributor




    munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      1












      1








      1





      $begingroup$


      I've recently started working on an application for visualization of really big datasets. While reading online it became apparent that most people use HDF5 for storing big, multi-dimensional datasets as it offers the versatility to allow many dimensions, has no file size limits and is transferable between OSs.



      My question is how to best deal with very large files. I am working with datasets that have 3-dimensions, all of which have large number of components (example size: 62,500 x 500,000 x 3,500, 32-bit int) which is a little problematic. HDF5 is theoretically able to deal with this, however, I've discovered it is really slow to write the data into the file and subsequently slow to retrieve it. Because the number of items is very large, data must be compressed otherwise it becomes insanely large on the HDD, however compression requires chunking and chunking is quite tricky to get right... I receive my data in (1 x 500,000 x 3500) chunks so it makes sense to write it one row at a time so with those dimensions and I ensure that chunks have dimensions (1 x n_values x 3500) to speed-up writing and data retrieval and have relatively small size (< 1Mb) for quick compression/decompression.



      Does anyone have any experience in how to efficiently write to HDF5 files when the size of each dimension is v. large? Are there any tricks that could help?



      I should also mention that I mostly work in Python, however, would be happy to do it in another language. I've tried increasing the chunk cache via the h5py_cache library.










      share|improve this question







      New contributor




      munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I've recently started working on an application for visualization of really big datasets. While reading online it became apparent that most people use HDF5 for storing big, multi-dimensional datasets as it offers the versatility to allow many dimensions, has no file size limits and is transferable between OSs.



      My question is how to best deal with very large files. I am working with datasets that have 3-dimensions, all of which have large number of components (example size: 62,500 x 500,000 x 3,500, 32-bit int) which is a little problematic. HDF5 is theoretically able to deal with this, however, I've discovered it is really slow to write the data into the file and subsequently slow to retrieve it. Because the number of items is very large, data must be compressed otherwise it becomes insanely large on the HDD, however compression requires chunking and chunking is quite tricky to get right... I receive my data in (1 x 500,000 x 3500) chunks so it makes sense to write it one row at a time so with those dimensions and I ensure that chunks have dimensions (1 x n_values x 3500) to speed-up writing and data retrieval and have relatively small size (< 1Mb) for quick compression/decompression.



      Does anyone have any experience in how to efficiently write to HDF5 files when the size of each dimension is v. large? Are there any tricks that could help?



      I should also mention that I mostly work in Python, however, would be happy to do it in another language. I've tried increasing the chunk cache via the h5py_cache library.







      python bigdata hierarchical-data-format






      share|improve this question







      New contributor




      munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Mar 21 at 16:48









      munieq11munieq11

      61




      61




      New contributor




      munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      munieq11 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          munieq11 is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47748%2fadvice-on-dealing-with-very-large-datasets-hdf5-python%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          munieq11 is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          munieq11 is a new contributor. Be nice, and check out our Code of Conduct.












          munieq11 is a new contributor. Be nice, and check out our Code of Conduct.











          munieq11 is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47748%2fadvice-on-dealing-with-very-large-datasets-hdf5-python%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?