t - table and degrees of freedom2019 Community Moderator ElectionCorrelation between time to event data and continuous dataCalculation and Visualization of Correlation Matrix with PandasHow to scrape a table from a webpage?Statistics - Train and test data splitSimple Q-Table Learning: Understanding Example CodeAre Hadoop and Python SciPy used for the same?Out of Memory Error when Selecting Data from Redshift TableOptimizing an averaged perceptron algorithm using numpy and scipy instead of dictionariesPandas: Assign back to table from grouping by column and indexError in Calculating the z Score for Normality Detection using numpy and scipy

Transcription Beats per minute

Is there a good way to store credentials outside of a password manager?

Personal Teleportation as a Weapon

What defines a dissertation?

Was Spock the First Vulcan in Starfleet?

What is the oldest known work of fiction?

Best way to store options for panels

Products and sum of cubes in Fibonacci

Is it okay / does it make sense for another player to join a running game of Munchkin?

What is difference between behavior and behaviour

Do I need a multiple entry visa for a trip UK -> Sweden -> UK?

Irreducibility of a simple polynomial

Can I Retrieve Email Addresses from BCC?

Coordinate position not precise

Using parameter substitution on a Bash array

Trouble understanding overseas colleagues

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

At which point does a character regain all their Hit Dice?

Valid Badminton Score?

What is the intuitive meaning of having a linear relationship between the logs of two variables?

Lay out the Carpet

How could Frankenstein get the parts for his _second_ creature?

Will it be accepted, if there is no ''Main Character" stereotype?

Student evaluations of teaching assistants



t - table and degrees of freedom



2019 Community Moderator ElectionCorrelation between time to event data and continuous dataCalculation and Visualization of Correlation Matrix with PandasHow to scrape a table from a webpage?Statistics - Train and test data splitSimple Q-Table Learning: Understanding Example CodeAre Hadoop and Python SciPy used for the same?Out of Memory Error when Selecting Data from Redshift TableOptimizing an averaged perceptron algorithm using numpy and scipy instead of dictionariesPandas: Assign back to table from grouping by column and indexError in Calculating the z Score for Normality Detection using numpy and scipy










1












$begingroup$


I am interested if someone can review this process and give me some tips. (I don't have any data science coworkers or friends to collaborate with...) When the script (.py file) below runs, it will output/print:



The total savings are 9793 kWh + - 192 kWh
The total savings are 9793 kWh + - 2.0 %


Ultimately I am attempting calculate "precision" with my results (+ - 192 kWh AND + - 2.0 %) ..



For starters, I cant find this info online so here's a snip from a book I am referencing on calculating data set standard error, then absolute precision, relative precision.



enter image description here



For retrieving my critical t value, I am following these steps from machinelearningmastery.com. This is where the scipy.stats import t package is required.



I cant remember where degrees of freedom comes into play. The machinelearningmastery example, the author uses df = 10 So until I can figure out this, I left that as a default value in my code below. If someone wanted to copy and paste the code below it should run...



I cant remember from college where degrees of freedom comes into play and how to utilize it. The length of the data when its converted into df2 Pandas dataframe is 31, which represents one months data 31 days. Any tips greatly appreciated..



import os
import numpy as np
import pandas as pd
import math
from scipy.stats import t

#actual electrical energy in kWh
actual = 40000

#calculated savings in kWh, output from Keras regression
data = [np.array([[1083.8748]], dtype='float32'), np.array([[998.98773]], dtype='float32'), np.array([[1137.0487]], dtype='float32'), np.array([[1077.2798]], dtype='float32'), np.array([[926.41284]], dtype='float32'),
np.array([[1030.7125]], dtype='float32'), np.array([[1028.0048]], dtype='float32'), np.array([[523.9799]], dtype='float32'), np.array([[1125.092]], dtype='float32'), np.array([[1119.7738]], dtype='float32'),
np.array([[918.6966]], dtype='float32'), np.array([[1112.5186]], dtype='float32'), np.array([[555.6942]], dtype='float32'), np.array([[1096.5643]], dtype='float32'), np.array([[826.35657]], dtype='float32'),
np.array([[1014.35406]], dtype='float32'), np.array([[1027.6962]], dtype='float32'), np.array([[924.20087]], dtype='float32'), np.array([[1035.217]], dtype='float32'), np.array([[1008.9658]], dtype='float32'),
np.array([[970.54047]], dtype='float32'), np.array([[847.0671]], dtype='float32'), np.array([[913.5519]], dtype='float32'), np.array([[1047.0747]], dtype='float32'), np.array([[920.0606]], dtype='float32'),
np.array([[994.2266]], dtype='float32'), np.array([[991.4501]], dtype='float32'), np.array([[972.43256]], dtype='float32'), np.array([[934.8802]], dtype='float32'), np.array([[912.04004]], dtype='float32'), np.array([[1131.297]], dtype='float32')]

#convert data to pandas series then DataFrame
df = pd.Series(data)
df2 = pd.DataFrame(df)

#define sum, standard deviation, mean of calculated savings data
total = df2.sum()
totalStd = np.std(df2.values)
totalMean = df2.mean()

#calculate saings
diff = int(actual - total)

#compute precision of results, starting with standard error
stdErr = totalStd / math.sqrt(len(total.index))

# define probability & degrees of freedom
p = 0.90
degf = 10

# retrieve t value <= probability
t = t.ppf(p, degf)

#calculate absolute precision
absPrec = t * stdErr

#calculate relative precision
relPrec = (100 * (absPrec / diff)).round(decimals=1)


#print results
absSavings = f'The total savings are int(diff) kWh + - int(absPrec) kWh'
print(absSavings)

relSavings = f'The total savings are int(diff) kWh + - float(relPrec) %'
print(relSavings)









share|improve this question









$endgroup$
















    1












    $begingroup$


    I am interested if someone can review this process and give me some tips. (I don't have any data science coworkers or friends to collaborate with...) When the script (.py file) below runs, it will output/print:



    The total savings are 9793 kWh + - 192 kWh
    The total savings are 9793 kWh + - 2.0 %


    Ultimately I am attempting calculate "precision" with my results (+ - 192 kWh AND + - 2.0 %) ..



    For starters, I cant find this info online so here's a snip from a book I am referencing on calculating data set standard error, then absolute precision, relative precision.



    enter image description here



    For retrieving my critical t value, I am following these steps from machinelearningmastery.com. This is where the scipy.stats import t package is required.



    I cant remember where degrees of freedom comes into play. The machinelearningmastery example, the author uses df = 10 So until I can figure out this, I left that as a default value in my code below. If someone wanted to copy and paste the code below it should run...



    I cant remember from college where degrees of freedom comes into play and how to utilize it. The length of the data when its converted into df2 Pandas dataframe is 31, which represents one months data 31 days. Any tips greatly appreciated..



    import os
    import numpy as np
    import pandas as pd
    import math
    from scipy.stats import t

    #actual electrical energy in kWh
    actual = 40000

    #calculated savings in kWh, output from Keras regression
    data = [np.array([[1083.8748]], dtype='float32'), np.array([[998.98773]], dtype='float32'), np.array([[1137.0487]], dtype='float32'), np.array([[1077.2798]], dtype='float32'), np.array([[926.41284]], dtype='float32'),
    np.array([[1030.7125]], dtype='float32'), np.array([[1028.0048]], dtype='float32'), np.array([[523.9799]], dtype='float32'), np.array([[1125.092]], dtype='float32'), np.array([[1119.7738]], dtype='float32'),
    np.array([[918.6966]], dtype='float32'), np.array([[1112.5186]], dtype='float32'), np.array([[555.6942]], dtype='float32'), np.array([[1096.5643]], dtype='float32'), np.array([[826.35657]], dtype='float32'),
    np.array([[1014.35406]], dtype='float32'), np.array([[1027.6962]], dtype='float32'), np.array([[924.20087]], dtype='float32'), np.array([[1035.217]], dtype='float32'), np.array([[1008.9658]], dtype='float32'),
    np.array([[970.54047]], dtype='float32'), np.array([[847.0671]], dtype='float32'), np.array([[913.5519]], dtype='float32'), np.array([[1047.0747]], dtype='float32'), np.array([[920.0606]], dtype='float32'),
    np.array([[994.2266]], dtype='float32'), np.array([[991.4501]], dtype='float32'), np.array([[972.43256]], dtype='float32'), np.array([[934.8802]], dtype='float32'), np.array([[912.04004]], dtype='float32'), np.array([[1131.297]], dtype='float32')]

    #convert data to pandas series then DataFrame
    df = pd.Series(data)
    df2 = pd.DataFrame(df)

    #define sum, standard deviation, mean of calculated savings data
    total = df2.sum()
    totalStd = np.std(df2.values)
    totalMean = df2.mean()

    #calculate saings
    diff = int(actual - total)

    #compute precision of results, starting with standard error
    stdErr = totalStd / math.sqrt(len(total.index))

    # define probability & degrees of freedom
    p = 0.90
    degf = 10

    # retrieve t value <= probability
    t = t.ppf(p, degf)

    #calculate absolute precision
    absPrec = t * stdErr

    #calculate relative precision
    relPrec = (100 * (absPrec / diff)).round(decimals=1)


    #print results
    absSavings = f'The total savings are int(diff) kWh + - int(absPrec) kWh'
    print(absSavings)

    relSavings = f'The total savings are int(diff) kWh + - float(relPrec) %'
    print(relSavings)









    share|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      I am interested if someone can review this process and give me some tips. (I don't have any data science coworkers or friends to collaborate with...) When the script (.py file) below runs, it will output/print:



      The total savings are 9793 kWh + - 192 kWh
      The total savings are 9793 kWh + - 2.0 %


      Ultimately I am attempting calculate "precision" with my results (+ - 192 kWh AND + - 2.0 %) ..



      For starters, I cant find this info online so here's a snip from a book I am referencing on calculating data set standard error, then absolute precision, relative precision.



      enter image description here



      For retrieving my critical t value, I am following these steps from machinelearningmastery.com. This is where the scipy.stats import t package is required.



      I cant remember where degrees of freedom comes into play. The machinelearningmastery example, the author uses df = 10 So until I can figure out this, I left that as a default value in my code below. If someone wanted to copy and paste the code below it should run...



      I cant remember from college where degrees of freedom comes into play and how to utilize it. The length of the data when its converted into df2 Pandas dataframe is 31, which represents one months data 31 days. Any tips greatly appreciated..



      import os
      import numpy as np
      import pandas as pd
      import math
      from scipy.stats import t

      #actual electrical energy in kWh
      actual = 40000

      #calculated savings in kWh, output from Keras regression
      data = [np.array([[1083.8748]], dtype='float32'), np.array([[998.98773]], dtype='float32'), np.array([[1137.0487]], dtype='float32'), np.array([[1077.2798]], dtype='float32'), np.array([[926.41284]], dtype='float32'),
      np.array([[1030.7125]], dtype='float32'), np.array([[1028.0048]], dtype='float32'), np.array([[523.9799]], dtype='float32'), np.array([[1125.092]], dtype='float32'), np.array([[1119.7738]], dtype='float32'),
      np.array([[918.6966]], dtype='float32'), np.array([[1112.5186]], dtype='float32'), np.array([[555.6942]], dtype='float32'), np.array([[1096.5643]], dtype='float32'), np.array([[826.35657]], dtype='float32'),
      np.array([[1014.35406]], dtype='float32'), np.array([[1027.6962]], dtype='float32'), np.array([[924.20087]], dtype='float32'), np.array([[1035.217]], dtype='float32'), np.array([[1008.9658]], dtype='float32'),
      np.array([[970.54047]], dtype='float32'), np.array([[847.0671]], dtype='float32'), np.array([[913.5519]], dtype='float32'), np.array([[1047.0747]], dtype='float32'), np.array([[920.0606]], dtype='float32'),
      np.array([[994.2266]], dtype='float32'), np.array([[991.4501]], dtype='float32'), np.array([[972.43256]], dtype='float32'), np.array([[934.8802]], dtype='float32'), np.array([[912.04004]], dtype='float32'), np.array([[1131.297]], dtype='float32')]

      #convert data to pandas series then DataFrame
      df = pd.Series(data)
      df2 = pd.DataFrame(df)

      #define sum, standard deviation, mean of calculated savings data
      total = df2.sum()
      totalStd = np.std(df2.values)
      totalMean = df2.mean()

      #calculate saings
      diff = int(actual - total)

      #compute precision of results, starting with standard error
      stdErr = totalStd / math.sqrt(len(total.index))

      # define probability & degrees of freedom
      p = 0.90
      degf = 10

      # retrieve t value <= probability
      t = t.ppf(p, degf)

      #calculate absolute precision
      absPrec = t * stdErr

      #calculate relative precision
      relPrec = (100 * (absPrec / diff)).round(decimals=1)


      #print results
      absSavings = f'The total savings are int(diff) kWh + - int(absPrec) kWh'
      print(absSavings)

      relSavings = f'The total savings are int(diff) kWh + - float(relPrec) %'
      print(relSavings)









      share|improve this question









      $endgroup$




      I am interested if someone can review this process and give me some tips. (I don't have any data science coworkers or friends to collaborate with...) When the script (.py file) below runs, it will output/print:



      The total savings are 9793 kWh + - 192 kWh
      The total savings are 9793 kWh + - 2.0 %


      Ultimately I am attempting calculate "precision" with my results (+ - 192 kWh AND + - 2.0 %) ..



      For starters, I cant find this info online so here's a snip from a book I am referencing on calculating data set standard error, then absolute precision, relative precision.



      enter image description here



      For retrieving my critical t value, I am following these steps from machinelearningmastery.com. This is where the scipy.stats import t package is required.



      I cant remember where degrees of freedom comes into play. The machinelearningmastery example, the author uses df = 10 So until I can figure out this, I left that as a default value in my code below. If someone wanted to copy and paste the code below it should run...



      I cant remember from college where degrees of freedom comes into play and how to utilize it. The length of the data when its converted into df2 Pandas dataframe is 31, which represents one months data 31 days. Any tips greatly appreciated..



      import os
      import numpy as np
      import pandas as pd
      import math
      from scipy.stats import t

      #actual electrical energy in kWh
      actual = 40000

      #calculated savings in kWh, output from Keras regression
      data = [np.array([[1083.8748]], dtype='float32'), np.array([[998.98773]], dtype='float32'), np.array([[1137.0487]], dtype='float32'), np.array([[1077.2798]], dtype='float32'), np.array([[926.41284]], dtype='float32'),
      np.array([[1030.7125]], dtype='float32'), np.array([[1028.0048]], dtype='float32'), np.array([[523.9799]], dtype='float32'), np.array([[1125.092]], dtype='float32'), np.array([[1119.7738]], dtype='float32'),
      np.array([[918.6966]], dtype='float32'), np.array([[1112.5186]], dtype='float32'), np.array([[555.6942]], dtype='float32'), np.array([[1096.5643]], dtype='float32'), np.array([[826.35657]], dtype='float32'),
      np.array([[1014.35406]], dtype='float32'), np.array([[1027.6962]], dtype='float32'), np.array([[924.20087]], dtype='float32'), np.array([[1035.217]], dtype='float32'), np.array([[1008.9658]], dtype='float32'),
      np.array([[970.54047]], dtype='float32'), np.array([[847.0671]], dtype='float32'), np.array([[913.5519]], dtype='float32'), np.array([[1047.0747]], dtype='float32'), np.array([[920.0606]], dtype='float32'),
      np.array([[994.2266]], dtype='float32'), np.array([[991.4501]], dtype='float32'), np.array([[972.43256]], dtype='float32'), np.array([[934.8802]], dtype='float32'), np.array([[912.04004]], dtype='float32'), np.array([[1131.297]], dtype='float32')]

      #convert data to pandas series then DataFrame
      df = pd.Series(data)
      df2 = pd.DataFrame(df)

      #define sum, standard deviation, mean of calculated savings data
      total = df2.sum()
      totalStd = np.std(df2.values)
      totalMean = df2.mean()

      #calculate saings
      diff = int(actual - total)

      #compute precision of results, starting with standard error
      stdErr = totalStd / math.sqrt(len(total.index))

      # define probability & degrees of freedom
      p = 0.90
      degf = 10

      # retrieve t value <= probability
      t = t.ppf(p, degf)

      #calculate absolute precision
      absPrec = t * stdErr

      #calculate relative precision
      relPrec = (100 * (absPrec / diff)).round(decimals=1)


      #print results
      absSavings = f'The total savings are int(diff) kWh + - int(absPrec) kWh'
      print(absSavings)

      relSavings = f'The total savings are int(diff) kWh + - float(relPrec) %'
      print(relSavings)






      python statistics scipy






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 21 at 14:24









      HenryHubHenryHub

      1617




      1617




















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47742%2ft-table-and-degrees-of-freedom%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47742%2ft-table-and-degrees-of-freedom%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?