Which is better: GPT or RelGAN for text generation?2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task

Neighboring nodes in the network

Is it canonical bit space?

Why do I get two different answers for this counting problem?

Python: return float 1.0 as int 1 but float 1.5 as float 1.5

Drawing a Grid/Tikz image

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

Why is this clock signal connected to a capacitor to gnd?

Blender 2.8 I can't see vertices, edges or faces in edit mode

How to say in German "enjoying home comforts"

Is there an expression that means doing something right before you will need it rather than doing it in case you might need it?

Can a virus destroy the BIOS of a modern computer?

Saudi Arabia Transit Visa

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

What is the word for reserving something for yourself before others do?

Why do bosons tend to occupy the same state?

Is the Joker left-handed?

What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?

Is it possible to create light that imparts a greater proportion of its energy as momentum rather than heat?

Why is consensus so controversial in Britain?

numexpr behavior in math mode and/or TikZ

Facing a paradox: Ehrenfest theorem in one dimension

90's TV series where a boy goes to another dimension through portal near power lines

Why doesn't using multiple commands with a || or && conditional work?

I would say: "You are another teacher", but she is a woman and I am a man



Which is better: GPT or RelGAN for text generation?



2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task










0












$begingroup$


Based on my understanding, gpt or gpt-2 are using language model loss to train and generate text, which do not contains GAN.



So which is better: GPT vs RelGAN/LeakGAN/SeqGAN/TextGAN



I am so confused about this question.










share|improve this question









$endgroup$











  • $begingroup$
    arxiv.org/abs/1810.12686
    $endgroup$
    – 不是phd的phd
    Mar 28 at 2:14















0












$begingroup$


Based on my understanding, gpt or gpt-2 are using language model loss to train and generate text, which do not contains GAN.



So which is better: GPT vs RelGAN/LeakGAN/SeqGAN/TextGAN



I am so confused about this question.










share|improve this question









$endgroup$











  • $begingroup$
    arxiv.org/abs/1810.12686
    $endgroup$
    – 不是phd的phd
    Mar 28 at 2:14













0












0








0





$begingroup$


Based on my understanding, gpt or gpt-2 are using language model loss to train and generate text, which do not contains GAN.



So which is better: GPT vs RelGAN/LeakGAN/SeqGAN/TextGAN



I am so confused about this question.










share|improve this question









$endgroup$




Based on my understanding, gpt or gpt-2 are using language model loss to train and generate text, which do not contains GAN.



So which is better: GPT vs RelGAN/LeakGAN/SeqGAN/TextGAN



I am so confused about this question.







deep-learning gan natural-language-process text-generation transformer






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Mar 26 at 8:39









不是phd的phd不是phd的phd

2049




2049











  • $begingroup$
    arxiv.org/abs/1810.12686
    $endgroup$
    – 不是phd的phd
    Mar 28 at 2:14
















  • $begingroup$
    arxiv.org/abs/1810.12686
    $endgroup$
    – 不是phd的phd
    Mar 28 at 2:14















$begingroup$
arxiv.org/abs/1810.12686
$endgroup$
– 不是phd的phd
Mar 28 at 2:14




$begingroup$
arxiv.org/abs/1810.12686
$endgroup$
– 不是phd的phd
Mar 28 at 2:14










1 Answer
1






active

oldest

votes


















1












$begingroup$

According to [Caccia et al., 2018], in general textual GANs are no rival for LMs regarding several quality measures. These are the conclusions of the paper:




This research demonstrates that well-adjusted language models are a remarkably strong baseline
and that temperature sweeping can provide a very clear characterization of model performance. A
well-adjusted language model outperforms the considered GAN variants as evaluated on both local,
and more surprisingly, global metrics of quality and diversity. Our temperature sweeping framework
shares characteristics with a Receiver Operating Curve. Analogously, if one needed a single scalar to
compare NLG models, one could compute area under the curve and seek the model with the smallest
value (lower is better for our considered metrics).



GAN-based generative models have been proven effective on real-valued data, however, but there
exist many difficult pernicious issues of moving to discrete data. These issues must be overcome
before they will improve over the strong MLE baselines. On the datasets and tasks considered,
potential issues caused by exposure bias were less than the issues of training GANs in discrete data.
GAN training may prove fruitful eventually, but this research lays forth clear boundaries that it must
first surpass.




This way, OpenAI's GPT and GPT-2 may be considered superior in text generation quality to current textual GANs.






share|improve this answer









$endgroup$












  • $begingroup$
    Thank you very much.
    $endgroup$
    – 不是phd的phd
    Mar 27 at 1:07











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48005%2fwhich-is-better-gpt-or-relgan-for-text-generation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

According to [Caccia et al., 2018], in general textual GANs are no rival for LMs regarding several quality measures. These are the conclusions of the paper:




This research demonstrates that well-adjusted language models are a remarkably strong baseline
and that temperature sweeping can provide a very clear characterization of model performance. A
well-adjusted language model outperforms the considered GAN variants as evaluated on both local,
and more surprisingly, global metrics of quality and diversity. Our temperature sweeping framework
shares characteristics with a Receiver Operating Curve. Analogously, if one needed a single scalar to
compare NLG models, one could compute area under the curve and seek the model with the smallest
value (lower is better for our considered metrics).



GAN-based generative models have been proven effective on real-valued data, however, but there
exist many difficult pernicious issues of moving to discrete data. These issues must be overcome
before they will improve over the strong MLE baselines. On the datasets and tasks considered,
potential issues caused by exposure bias were less than the issues of training GANs in discrete data.
GAN training may prove fruitful eventually, but this research lays forth clear boundaries that it must
first surpass.




This way, OpenAI's GPT and GPT-2 may be considered superior in text generation quality to current textual GANs.






share|improve this answer









$endgroup$












  • $begingroup$
    Thank you very much.
    $endgroup$
    – 不是phd的phd
    Mar 27 at 1:07















1












$begingroup$

According to [Caccia et al., 2018], in general textual GANs are no rival for LMs regarding several quality measures. These are the conclusions of the paper:




This research demonstrates that well-adjusted language models are a remarkably strong baseline
and that temperature sweeping can provide a very clear characterization of model performance. A
well-adjusted language model outperforms the considered GAN variants as evaluated on both local,
and more surprisingly, global metrics of quality and diversity. Our temperature sweeping framework
shares characteristics with a Receiver Operating Curve. Analogously, if one needed a single scalar to
compare NLG models, one could compute area under the curve and seek the model with the smallest
value (lower is better for our considered metrics).



GAN-based generative models have been proven effective on real-valued data, however, but there
exist many difficult pernicious issues of moving to discrete data. These issues must be overcome
before they will improve over the strong MLE baselines. On the datasets and tasks considered,
potential issues caused by exposure bias were less than the issues of training GANs in discrete data.
GAN training may prove fruitful eventually, but this research lays forth clear boundaries that it must
first surpass.




This way, OpenAI's GPT and GPT-2 may be considered superior in text generation quality to current textual GANs.






share|improve this answer









$endgroup$












  • $begingroup$
    Thank you very much.
    $endgroup$
    – 不是phd的phd
    Mar 27 at 1:07













1












1








1





$begingroup$

According to [Caccia et al., 2018], in general textual GANs are no rival for LMs regarding several quality measures. These are the conclusions of the paper:




This research demonstrates that well-adjusted language models are a remarkably strong baseline
and that temperature sweeping can provide a very clear characterization of model performance. A
well-adjusted language model outperforms the considered GAN variants as evaluated on both local,
and more surprisingly, global metrics of quality and diversity. Our temperature sweeping framework
shares characteristics with a Receiver Operating Curve. Analogously, if one needed a single scalar to
compare NLG models, one could compute area under the curve and seek the model with the smallest
value (lower is better for our considered metrics).



GAN-based generative models have been proven effective on real-valued data, however, but there
exist many difficult pernicious issues of moving to discrete data. These issues must be overcome
before they will improve over the strong MLE baselines. On the datasets and tasks considered,
potential issues caused by exposure bias were less than the issues of training GANs in discrete data.
GAN training may prove fruitful eventually, but this research lays forth clear boundaries that it must
first surpass.




This way, OpenAI's GPT and GPT-2 may be considered superior in text generation quality to current textual GANs.






share|improve this answer









$endgroup$



According to [Caccia et al., 2018], in general textual GANs are no rival for LMs regarding several quality measures. These are the conclusions of the paper:




This research demonstrates that well-adjusted language models are a remarkably strong baseline
and that temperature sweeping can provide a very clear characterization of model performance. A
well-adjusted language model outperforms the considered GAN variants as evaluated on both local,
and more surprisingly, global metrics of quality and diversity. Our temperature sweeping framework
shares characteristics with a Receiver Operating Curve. Analogously, if one needed a single scalar to
compare NLG models, one could compute area under the curve and seek the model with the smallest
value (lower is better for our considered metrics).



GAN-based generative models have been proven effective on real-valued data, however, but there
exist many difficult pernicious issues of moving to discrete data. These issues must be overcome
before they will improve over the strong MLE baselines. On the datasets and tasks considered,
potential issues caused by exposure bias were less than the issues of training GANs in discrete data.
GAN training may prove fruitful eventually, but this research lays forth clear boundaries that it must
first surpass.




This way, OpenAI's GPT and GPT-2 may be considered superior in text generation quality to current textual GANs.







share|improve this answer












share|improve this answer



share|improve this answer










answered Mar 26 at 9:10









ncasasncasas

3,7381131




3,7381131











  • $begingroup$
    Thank you very much.
    $endgroup$
    – 不是phd的phd
    Mar 27 at 1:07
















  • $begingroup$
    Thank you very much.
    $endgroup$
    – 不是phd的phd
    Mar 27 at 1:07















$begingroup$
Thank you very much.
$endgroup$
– 不是phd的phd
Mar 27 at 1:07




$begingroup$
Thank you very much.
$endgroup$
– 不是phd的phd
Mar 27 at 1:07

















draft saved

draft discarded
















































Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48005%2fwhich-is-better-gpt-or-relgan-for-text-generation%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?