Is a linearly independent set whose span is dense a Schauder basis? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Coordinate functions of Schauder basisLinearly independentSchauder basis for a separable Banach spaceWhat is the difference between a Hamel basis and a Schauder basis?Hamel basis for subspacesExistence of weak Schauder-basis for concrete example.Isomorphisms with invariant linearly independent dense subset.Linear independence and Schauder basisWhy isn't every Hamel basis a Schauder basis?Schauder basis that is not Hilbert basis
What is a Meta algorithm?
Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?
Can a non-EU citizen traveling with me come with me through the EU passport line?
Bonus calculation: Am I making a mountain out of a molehill?
How widely used is the term Treppenwitz? Is it something that most Germans know?
Did Kevin spill real chili?
What are the pros and cons of Aerospike nosecones?
How much radiation do nuclear physics experiments expose researchers to nowadays?
Storing hydrofluoric acid before the invention of plastics
Why is "Captain Marvel" translated as male in Portugal?
Is the Standard Deduction better than Itemized when both are the same amount?
Dot products and For-loops
How can players work together to take actions that are otherwise impossible?
do i need a schengen visa for a direct flight to amsterdam?
How discoverable are IPv6 addresses and AAAA names by potential attackers?
Is the argument below valid?
What happens to sewage if there is no river near by?
Can an alien society believe that their star system is the universe?
Should I call the interviewer directly, if HR aren't responding?
How to find all the available tools in macOS terminal?
What LEGO pieces have "real-world" functionality?
Single word antonym of "flightless"
How do I mention the quality of my school without bragging
Why are there no cargo aircraft with "flying wing" design?
Is a linearly independent set whose span is dense a Schauder basis?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Coordinate functions of Schauder basisLinearly independentSchauder basis for a separable Banach spaceWhat is the difference between a Hamel basis and a Schauder basis?Hamel basis for subspacesExistence of weak Schauder-basis for concrete example.Isomorphisms with invariant linearly independent dense subset.Linear independence and Schauder basisWhy isn't every Hamel basis a Schauder basis?Schauder basis that is not Hilbert basis
$begingroup$
If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?
If not, does anyone know of any counterexamples?
linear-algebra functional-analysis banach-spaces normed-spaces schauder-basis
$endgroup$
add a comment |
$begingroup$
If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?
If not, does anyone know of any counterexamples?
linear-algebra functional-analysis banach-spaces normed-spaces schauder-basis
$endgroup$
add a comment |
$begingroup$
If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?
If not, does anyone know of any counterexamples?
linear-algebra functional-analysis banach-spaces normed-spaces schauder-basis
$endgroup$
If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?
If not, does anyone know of any counterexamples?
linear-algebra functional-analysis banach-spaces normed-spaces schauder-basis
linear-algebra functional-analysis banach-spaces normed-spaces schauder-basis
asked Apr 1 at 21:28
Keshav SrinivasanKeshav Srinivasan
2,47521547
2,47521547
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$ by the Weierstrass approximation theorem. But it is not a Schauder basis of that space, since not every continuous function is given by a power series.
A Schauder basis is, in general, much harder to construct than a set with dense span.
Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset) that have no Schauder basis at all.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171184%2fis-a-linearly-independent-set-whose-span-is-dense-a-schauder-basis%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$ by the Weierstrass approximation theorem. But it is not a Schauder basis of that space, since not every continuous function is given by a power series.
A Schauder basis is, in general, much harder to construct than a set with dense span.
Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset) that have no Schauder basis at all.
$endgroup$
add a comment |
$begingroup$
No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$ by the Weierstrass approximation theorem. But it is not a Schauder basis of that space, since not every continuous function is given by a power series.
A Schauder basis is, in general, much harder to construct than a set with dense span.
Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset) that have no Schauder basis at all.
$endgroup$
add a comment |
$begingroup$
No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$ by the Weierstrass approximation theorem. But it is not a Schauder basis of that space, since not every continuous function is given by a power series.
A Schauder basis is, in general, much harder to construct than a set with dense span.
Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset) that have no Schauder basis at all.
$endgroup$
No, certainly not. The linearly independent set $1, x, x^2, x^3, dots$ has span dense in $C[0,1]$ by the Weierstrass approximation theorem. But it is not a Schauder basis of that space, since not every continuous function is given by a power series.
A Schauder basis is, in general, much harder to construct than a set with dense span.
Since Enflo we know that there are separable Banach spaces (hence they have countable dense subset) that have no Schauder basis at all.
edited Apr 5 at 0:27
answered Apr 1 at 21:33
GEdgarGEdgar
63.6k269175
63.6k269175
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171184%2fis-a-linearly-independent-set-whose-span-is-dense-a-schauder-basis%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown