How to format a long polynomial Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Why are default LaTeX margins so big?Polynomial Long Division over GF(p)Why does widehat behave differently if I insert hspace0pt?Converting all numbers in document to set number of decimal placesHow to construct a long equation that is split in LHS and RHS to occupy a narrow column?Using mathspec to change digits font in math mode isn't workingStrange alignment issue in subequationsCorrect typesetting of a formula with a long fractionWriting Lines and Lines of Math Without Continuation CharactersHow continue a equation next lineIn the figure form, adjust the whole size of “text” and “math” format at once (II): from twocolumngrid to onecolumngrid
Can gravitational waves pass through a black hole?
Does Prince Arnaud cause someone holding the Princess to lose?
Does traveling In The United States require a passport or can I use my green card if not a US citizen?
Fourier Transform of Airy Equation
Putting Ant-Man on house arrest
Does using the Inspiration rules for character defects encourage My Guy Syndrome?
Why is one lightbulb in a string illuminated?
How to calculate density of unknown planet?
Marquee sign letters
How to make an animal which can only breed for a certain number of generations?
Assertions In A Mock Callout Test
Why aren't these two solutions equivalent? Combinatorics problem
A journey... into the MIND
Lights are flickering on and off after accidentally bumping into light switch
Why not use the yoke to control yaw, as well as pitch and roll?
Why doesn't the university give past final exams' answers?
What were wait-states, and why was it only an issue for PCs?
Converting a text document with special format to Pandas DataFrame
Proving inequality for positive definite matrix
Has a Nobel Peace laureate ever been accused of war crimes?
Can I take recommendation from someone I met at a conference?
Why these surprising proportionalities of integrals involving odd zeta values?
Suing a Police Officer Instead of the Police Department
Will the Antimagic Field spell cause elementals not summoned by magic to dissipate?
How to format a long polynomial
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Why are default LaTeX margins so big?Polynomial Long Division over GF(p)Why does widehat behave differently if I insert hspace0pt?Converting all numbers in document to set number of decimal placesHow to construct a long equation that is split in LHS and RHS to occupy a narrow column?Using mathspec to change digits font in math mode isn't workingStrange alignment issue in subequationsCorrect typesetting of a formula with a long fractionWriting Lines and Lines of Math Without Continuation CharactersHow continue a equation next lineIn the figure form, adjust the whole size of “text” and “math” format at once (II): from twocolumngrid to onecolumngrid
I have a long polynomial:
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
$ f(z)=frac1382112640(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
enddocument
How do I format such a long polynomial correctly?
math-mode
add a comment |
I have a long polynomial:
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
$ f(z)=frac1382112640(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
enddocument
How do I format such a long polynomial correctly?
math-mode
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_i,j$ and then adding a table to show the values.
– Mefitico
Apr 5 at 11:59
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
Apr 5 at 12:12
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
Apr 5 at 12:19
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
Apr 5 at 12:23
add a comment |
I have a long polynomial:
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
$ f(z)=frac1382112640(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
enddocument
How do I format such a long polynomial correctly?
math-mode
I have a long polynomial:
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
$ f(z)=frac1382112640(-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028\
079eta^3+347370177721463765064153eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
enddocument
How do I format such a long polynomial correctly?
math-mode
math-mode
edited Apr 7 at 10:20
Peter Mortensen
55437
55437
asked Apr 5 at 7:16
NickNick
1988
1988
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_i,j$ and then adding a table to show the values.
– Mefitico
Apr 5 at 11:59
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
Apr 5 at 12:12
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
Apr 5 at 12:19
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
Apr 5 at 12:23
add a comment |
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_i,j$ and then adding a table to show the values.
– Mefitico
Apr 5 at 11:59
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
Apr 5 at 12:12
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
Apr 5 at 12:19
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
Apr 5 at 12:23
5
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_i,j$ and then adding a table to show the values.
– Mefitico
Apr 5 at 11:59
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_i,j$ and then adding a table to show the values.
– Mefitico
Apr 5 at 11:59
1
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
Apr 5 at 12:12
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
Apr 5 at 12:12
1
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
Apr 5 at 12:19
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
Apr 5 at 12:19
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
Apr 5 at 12:23
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
Apr 5 at 12:23
add a comment |
7 Answers
7
active
oldest
votes
I would use something like this
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
beginalign*
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
endalign*
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
enddocument
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
Apr 5 at 15:44
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
begingather*
beginalign*
g(eta,z)&=
parbox[t]0.85displaywidthraggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalign*
\[2ex]
f(z)=frac1382112640fracg(eta,z)h(z)
endgather*
enddocument
your answer is OK, but some terms are out of pages margins.
– Nick
Apr 5 at 8:01
8
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
Apr 5 at 8:19
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
Apr 5 at 8:29
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
Apr 5 at 8:36
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac1382,112,640 ; fracg(eta, z)u(z) , v(z) , w(z) $$
where
$$
beginarrayll
g(eta, z) =
beginbmatrix
beginarrayr @hspace0em r
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
endarray
endbmatrix^T
beginbmatrix
beginarrayl
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
endarray
endbmatrix
&
beginarrayl
u(z) = beginbmatrix beginarrayr @hspace0em r & 417,420 \ - & 4,169,121 \ - & 15,571,312 endarrayendbmatrix^T beginbmatrix beginarrayl z^2 \ z \ 1 endarrayendbmatrix\[3em]
v(z) = beginbmatrix beginarrayr @hspace0em r & 1,546 \ & 3,537 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix\[3em]
w(z) = beginbmatrixbeginarrayr @hspace0em r & 3,092 \ & 17,001 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix \[3em]
endarray
endarray
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
Apr 6 at 11:00
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
Apr 7 at 3:49
@jochen thanks, updated
– Tasos Papastylianou
Apr 7 at 15:51
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
Apr 7 at 15:51
add a comment |
or
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools, nccmath
begindocument
beginmultline*medmath
f(z)=frac1382112640
fracleft[
beginmultlined
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
endmultlinedright]
(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endmultline*
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
[
arraycolsep=0.5pt
beginarrayrrllrll
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
endarray
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
enddocument
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begindmath*
f(z)=frac1382112640times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^-1
enddmath*
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclassarticle
usepackagemathtools
begindocument
beginalignat*2
& f(z) && = frac1382112640 times left( vphantomfrac1382112640 -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantomfrac1382112640 right) \[1.5ex]
& && times frac1(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalignat*
enddocument
Do you think this fits the page margin?
– JouleV
Apr 5 at 9:14
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
Apr 5 at 9:22
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
Apr 7 at 0:32
OK. I will revise this.
– Andre
Apr 7 at 8:37
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
Apr 7 at 10:12
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-a-long-polynomial%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
I would use something like this
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
beginalign*
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
endalign*
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
enddocument
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
Apr 5 at 15:44
add a comment |
I would use something like this
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
beginalign*
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
endalign*
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
enddocument
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
Apr 5 at 15:44
add a comment |
I would use something like this
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
beginalign*
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
endalign*
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
enddocument
I would use something like this
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
beginalign*
A=&,-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4\
&,-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3\
&,+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2\
&,-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2\
&,+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z\
&,-317254092617698017425280eta^5z-443761561344388063474665eta^4z\
&,+82327155732241730770824eta z-514623285385260545505123eta^2z\
&,-1010535343560043404912120eta^2-357788302700438191196160eta^5\
&,-43808044579418934376632-214023244873618345872240eta^4\
&,+11818373349781028079eta^3+347370177721463765064153eta
endalign*
and
[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)]
enddocument
answered Apr 5 at 7:24
JouleVJouleV
15.1k22666
15.1k22666
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
Apr 5 at 15:44
add a comment |
1
you could format this even more compactly by using matrix multiplication to expressA
– Tasos Papastylianou
Apr 5 at 15:44
1
1
you could format this even more compactly by using matrix multiplication to express
A
– Tasos Papastylianou
Apr 5 at 15:44
you could format this even more compactly by using matrix multiplication to express
A
– Tasos Papastylianou
Apr 5 at 15:44
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
begingather*
beginalign*
g(eta,z)&=
parbox[t]0.85displaywidthraggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalign*
\[2ex]
f(z)=frac1382112640fracg(eta,z)h(z)
endgather*
enddocument
your answer is OK, but some terms are out of pages margins.
– Nick
Apr 5 at 8:01
8
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
Apr 5 at 8:19
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
Apr 5 at 8:29
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
Apr 5 at 8:36
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
begingather*
beginalign*
g(eta,z)&=
parbox[t]0.85displaywidthraggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalign*
\[2ex]
f(z)=frac1382112640fracg(eta,z)h(z)
endgather*
enddocument
your answer is OK, but some terms are out of pages margins.
– Nick
Apr 5 at 8:01
8
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
Apr 5 at 8:19
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
Apr 5 at 8:29
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
Apr 5 at 8:36
add a comment |
I suggest something line the following, so the wide terms are reduced.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
begingather*
beginalign*
g(eta,z)&=
parbox[t]0.85displaywidthraggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalign*
\[2ex]
f(z)=frac1382112640fracg(eta,z)h(z)
endgather*
enddocument
I suggest something line the following, so the wide terms are reduced.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
begingather*
beginalign*
g(eta,z)&=
parbox[t]0.85displaywidthraggedright
$-306772802511648469920eta^4z^4+
762453974480763801600eta^5z^4-
1678626210368271790080eta^5z^3-
28510918043555533736160eta^4z^3+
11443138641451067779872eta^3z^3-
52164076923190540413504eta^2z^2-
78145258181161076156160eta^5z^2-
211306163712129371808450eta^4z^2+
228927087397104405937944eta^3z^2+
999881065017543109136462eta^3z-
317254092617698017425280eta^5z-
443761561344388063474665eta^4z+
82327155732241730770824eta z-
514623285385260545505123eta^2z-
1010535343560043404912120eta^2-
357788302700438191196160eta^5-
43808044579418934376632-
214023244873618345872240eta^4+
11818373349781028079eta^3+
347370177721463765064153eta$
\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalign*
\[2ex]
f(z)=frac1382112640fracg(eta,z)h(z)
endgather*
enddocument
answered Apr 5 at 7:32
egregegreg
736k8919353261
736k8919353261
your answer is OK, but some terms are out of pages margins.
– Nick
Apr 5 at 8:01
8
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
Apr 5 at 8:19
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
Apr 5 at 8:29
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
Apr 5 at 8:36
add a comment |
your answer is OK, but some terms are out of pages margins.
– Nick
Apr 5 at 8:01
8
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
Apr 5 at 8:19
@Nick egreg's answer uses default margin ofarticle
, which is already really big. But it doesn't fit your margin?
– JouleV
Apr 5 at 8:29
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
Apr 5 at 8:36
your answer is OK, but some terms are out of pages margins.
– Nick
Apr 5 at 8:01
your answer is OK, but some terms are out of pages margins.
– Nick
Apr 5 at 8:01
8
8
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
Apr 5 at 8:19
@Nick Without knowing the line width you're using it's difficult to say more.
– egreg
Apr 5 at 8:19
@Nick egreg's answer uses default margin of
article
, which is already really big. But it doesn't fit your margin?– JouleV
Apr 5 at 8:29
@Nick egreg's answer uses default margin of
article
, which is already really big. But it doesn't fit your margin?– JouleV
Apr 5 at 8:29
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
Apr 5 at 8:36
I have moved the signs "-, +" from lines end and put them under sign "=".
– Nick
Apr 5 at 8:36
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac1382,112,640 ; fracg(eta, z)u(z) , v(z) , w(z) $$
where
$$
beginarrayll
g(eta, z) =
beginbmatrix
beginarrayr @hspace0em r
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
endarray
endbmatrix^T
beginbmatrix
beginarrayl
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
endarray
endbmatrix
&
beginarrayl
u(z) = beginbmatrix beginarrayr @hspace0em r & 417,420 \ - & 4,169,121 \ - & 15,571,312 endarrayendbmatrix^T beginbmatrix beginarrayl z^2 \ z \ 1 endarrayendbmatrix\[3em]
v(z) = beginbmatrix beginarrayr @hspace0em r & 1,546 \ & 3,537 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix\[3em]
w(z) = beginbmatrixbeginarrayr @hspace0em r & 3,092 \ & 17,001 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix \[3em]
endarray
endarray
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
Apr 6 at 11:00
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
Apr 7 at 3:49
@jochen thanks, updated
– Tasos Papastylianou
Apr 7 at 15:51
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
Apr 7 at 15:51
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac1382,112,640 ; fracg(eta, z)u(z) , v(z) , w(z) $$
where
$$
beginarrayll
g(eta, z) =
beginbmatrix
beginarrayr @hspace0em r
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
endarray
endbmatrix^T
beginbmatrix
beginarrayl
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
endarray
endbmatrix
&
beginarrayl
u(z) = beginbmatrix beginarrayr @hspace0em r & 417,420 \ - & 4,169,121 \ - & 15,571,312 endarrayendbmatrix^T beginbmatrix beginarrayl z^2 \ z \ 1 endarrayendbmatrix\[3em]
v(z) = beginbmatrix beginarrayr @hspace0em r & 1,546 \ & 3,537 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix\[3em]
w(z) = beginbmatrixbeginarrayr @hspace0em r & 3,092 \ & 17,001 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix \[3em]
endarray
endarray
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
Apr 6 at 11:00
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
Apr 7 at 3:49
@jochen thanks, updated
– Tasos Papastylianou
Apr 7 at 15:51
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
Apr 7 at 15:51
add a comment |
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac1382,112,640 ; fracg(eta, z)u(z) , v(z) , w(z) $$
where
$$
beginarrayll
g(eta, z) =
beginbmatrix
beginarrayr @hspace0em r
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
endarray
endbmatrix^T
beginbmatrix
beginarrayl
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
endarray
endbmatrix
&
beginarrayl
u(z) = beginbmatrix beginarrayr @hspace0em r & 417,420 \ - & 4,169,121 \ - & 15,571,312 endarrayendbmatrix^T beginbmatrix beginarrayl z^2 \ z \ 1 endarrayendbmatrix\[3em]
v(z) = beginbmatrix beginarrayr @hspace0em r & 1,546 \ & 3,537 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix\[3em]
w(z) = beginbmatrixbeginarrayr @hspace0em r & 3,092 \ & 17,001 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix \[3em]
endarray
endarray
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:
where:
Code:
$$ f(z)=frac1382,112,640 ; fracg(eta, z)u(z) , v(z) , w(z) $$
where
$$
beginarrayll
g(eta, z) =
beginbmatrix
beginarrayr @hspace0em r
- & 306,772,802,511,648,469,920 \
& 762,453,974,480,763,801,600 \
- & 1,678,626,210,368,271,790,080 \
- & 28,510,918,043,555,533,736,160 \
& 11,443,138,641,451,067,779,872 \
- & 52,164,076,923,190,540,413,504 \
- & 78,145,258,181,161,076,156,160 \
- & 211,306,163,712,129,371,808,450 \
& 228,927,087,397,104,405,937,944 \
& 999,881,065,017,543,109,136,462 \
- & 317,254,092,617,698,017,425,280 \
- & 443,761,561,344,388,063,474,665 \
& 82,327,155,732,241,730,770,824 \
- & 514,623,285,385,260,545,505,123 \
- & 1,010,535,343,560,043,404,912,120 \
- & 357,788,302,700,438,191,196,160 \
- & 43,808,044,579,418,934,376,632 \
- & 214,023,244,873,618,345,872,240 \
& 11,818,373,349,781,028,079 \
& 347,370,177,721,463,765,064,153
endarray
endbmatrix^T
beginbmatrix
beginarrayl
eta^4z^4 \
eta^5z^4 \
eta^5z^3 \
eta^4z^3 \
eta^3z^3 \
eta^2z^2 \
eta^5z^2 \
eta^4z^2 \
eta^3z^2 \
eta^3z \
eta^5z \
eta^4z \
eta z \
eta^2z \
eta^2 \
eta^5 \
1 \
eta^4 \
eta^3 \
eta
endarray
endbmatrix
&
beginarrayl
u(z) = beginbmatrix beginarrayr @hspace0em r & 417,420 \ - & 4,169,121 \ - & 15,571,312 endarrayendbmatrix^T beginbmatrix beginarrayl z^2 \ z \ 1 endarrayendbmatrix\[3em]
v(z) = beginbmatrix beginarrayr @hspace0em r & 1,546 \ & 3,537 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix\[3em]
w(z) = beginbmatrixbeginarrayr @hspace0em r & 3,092 \ & 17,001 endarrayendbmatrix^T beginbmatrixbeginarrayl z \ 1 endarrayendbmatrix \[3em]
endarray
endarray
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.
edited Apr 7 at 15:56
answered Apr 5 at 16:10
Tasos PapastylianouTasos Papastylianou
362211
362211
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
Apr 6 at 11:00
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
Apr 7 at 3:49
@jochen thanks, updated
– Tasos Papastylianou
Apr 7 at 15:51
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
Apr 7 at 15:51
add a comment |
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
Apr 6 at 11:00
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
Apr 7 at 3:49
@jochen thanks, updated
– Tasos Papastylianou
Apr 7 at 15:51
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
Apr 7 at 15:51
1
1
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
Apr 6 at 11:00
The round brackets in the definitions of $u$, $v$ and $w$ seem superfluous.
– jochen
Apr 6 at 11:00
1
1
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
Apr 7 at 3:49
From the point of view of someone wishing or needing to use such a polynomial, it would be helpful to insert breaks in all the long numbers to ease readability.
– JeremyC
Apr 7 at 3:49
@jochen thanks, updated
– Tasos Papastylianou
Apr 7 at 15:51
@jochen thanks, updated
– Tasos Papastylianou
Apr 7 at 15:51
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
Apr 7 at 15:51
@JeremyC thanks, updated. I went for comma delimiters rather than breaks, as that might have been misleading in the context of matrix notation.
– Tasos Papastylianou
Apr 7 at 15:51
add a comment |
or
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools, nccmath
begindocument
beginmultline*medmath
f(z)=frac1382112640
fracleft[
beginmultlined
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
endmultlinedright]
(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endmultline*
add a comment |
or
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools, nccmath
begindocument
beginmultline*medmath
f(z)=frac1382112640
fracleft[
beginmultlined
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
endmultlinedright]
(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endmultline*
add a comment |
or
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools, nccmath
begindocument
beginmultline*medmath
f(z)=frac1382112640
fracleft[
beginmultlined
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
endmultlinedright]
(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endmultline*
or
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools, nccmath
begindocument
beginmultline*medmath
f(z)=frac1382112640
fracleft[
beginmultlined
-306772802511648469920eta^4z^4+762453974480763801600eta^5z^4-\
1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+\
11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-\
78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+\
228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-\
317254092617698017425280eta^5z-443761561344388063474665eta^4z+\
82327155732241730770824eta z - 514623285385260545505123eta^2z-\
1010535343560043404912120eta^2-357788302700438191196160eta^5-\
43808044579418934376632-214023244873618345872240eta^4+\
11818373349781028079eta^3+347370177721463765064153eta
endmultlinedright]
(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endmultline*
answered Apr 5 at 7:36
ZarkoZarko
130k869170
130k869170
add a comment |
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
[
arraycolsep=0.5pt
beginarrayrrllrll
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
endarray
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
enddocument
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
[
arraycolsep=0.5pt
beginarrayrrllrll
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
endarray
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
enddocument
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
add a comment |
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
[
arraycolsep=0.5pt
beginarrayrrllrll
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
endarray
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
enddocument
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.
documentclassarticle
%usepackageamsmath% Loaded by mathtools
usepackagemathtools
begindocument
Blah blah
[f(z)=frac1382112640cdotfracAB]
where
[
arraycolsep=0.5pt
beginarrayrrllrll
A=&, -306,772,802,511,648,469,920 &eta^4 &z^4 & +762,453,974,480,763,801,600 &eta^5 &z^4\
&, -1,678,626,210,368,271,790,080 &eta^5 &z^3 & -2,8510,918,043,555,533,736,160 &eta^4 &z^3\
&, +11,443,138,641,451,067,779,872 &eta^3 &z^3 & -5,2164,076,923,190,540,413,504 &eta^2 &z^2\
&, -78,145,258,181,161,076,156,160 &eta^5 &z^2 & -21,1306,163,712,129,371,808,450 &eta^4 &z^2\
&, +228,927,087,397,104,405,937,944 &eta^3 &z^2 & +99,9881,065,017,543,109,136,462 &eta^3 &z\
&, -317,254,092,617,698,017,425,280 &eta^5 &z & -44,3761,561,344,388,063,474,665 &eta^4 &z\
&, +82,327,155,732,241,730,770,824 &eta &z & -51,4623,285,385,260,545,505,123 &eta^2 &z\
&,-1,010,535,343,560,043,404,912,120 &eta^2 & & -35,7788,302,700,438,191,196,160 &eta^5 &\
&, -43,808,044,579,418,934,376,632 & & & -21,4023,244,873,618,345,872,240 &eta^4 &\
&, +11,818,373,349,781,028,079 &eta^3 & & +34,7370,177,721,463,765,064,153 &eta &
endarray
]
and
[B=(417,420z^2-4,169,121z-15,571,312)(1,546z+3,537)(3,092z+17,001)]
enddocument
I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:
answered Apr 5 at 10:33
flawrflawr
527413
527413
add a comment |
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begindmath*
f(z)=frac1382112640times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^-1
enddmath*
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begindmath*
f(z)=frac1382112640times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^-1
enddmath*
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
add a comment |
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begindmath*
f(z)=frac1382112640times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^-1
enddmath*
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
I would usually use the package breqn
. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn
and sansmath
in the same document)
begindmath*
f(z)=frac1382112640times-306772802511648469920eta^4z^4+left(762453974480763801600eta^5z^4-1678626210368271790080eta^5z^3-28510918043555533736160eta^4z^3+11443138641451067779872eta^3z^3-52164076923190540413504eta^2z^2-78145258181161076156160eta^5z^2-211306163712129371808450eta^4z^2+228927087397104405937944eta^3z^2+999881065017543109136462eta^3z-317254092617698017425280eta^5z-443761561344388063474665eta^4z+82327155732241730770824eta z-514623285385260545505123eta^2z-1010535343560043404912120eta^2-357788302700438191196160eta^5-43808044579418934376632-214023244873618345872240eta^4+11818373349781028079eta^3+347370177721463765064153etaright)timesleft(left(417420z^2-4169121z-15571312right)left(1546z+3537right)left(3092z+17001right)right)^-1
enddmath*
which produces
IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat
version.
answered Apr 5 at 13:48
PhilipPhilip
235
235
add a comment |
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclassarticle
usepackagemathtools
begindocument
beginalignat*2
& f(z) && = frac1382112640 times left( vphantomfrac1382112640 -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantomfrac1382112640 right) \[1.5ex]
& && times frac1(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalignat*
enddocument
Do you think this fits the page margin?
– JouleV
Apr 5 at 9:14
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
Apr 5 at 9:22
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
Apr 7 at 0:32
OK. I will revise this.
– Andre
Apr 7 at 8:37
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
Apr 7 at 10:12
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclassarticle
usepackagemathtools
begindocument
beginalignat*2
& f(z) && = frac1382112640 times left( vphantomfrac1382112640 -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantomfrac1382112640 right) \[1.5ex]
& && times frac1(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalignat*
enddocument
Do you think this fits the page margin?
– JouleV
Apr 5 at 9:14
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
Apr 5 at 9:22
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
Apr 7 at 0:32
OK. I will revise this.
– Andre
Apr 7 at 8:37
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
Apr 7 at 10:12
add a comment |
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclassarticle
usepackagemathtools
begindocument
beginalignat*2
& f(z) && = frac1382112640 times left( vphantomfrac1382112640 -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantomfrac1382112640 right) \[1.5ex]
& && times frac1(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalignat*
enddocument
Following the original disposition of the function, but using alignat
, parenthesis, and fractions to emphasize its different terms.
documentclassarticle
usepackagemathtools
begindocument
beginalignat*2
& f(z) && = frac1382112640 times left( vphantomfrac1382112640 -306772802511648469920 eta^4 z^4 + 762453974480763801600 eta^5 z^4 right. \[1.5ex]
& && -1678626210368271790080 eta^5 z^3 -28510918043555533736160 eta^4 z^3 \[1.5ex]
& && +11443138641451067779872 eta^3 z^3 -52164076923190540413504 eta^2 z^2 \[1.5ex]
& && -78145258181161076156160 eta^5 z^2 -211306163712129371808450 eta^4 z^2 \[1.5ex]
& && +228927087397104405937944 eta^3 z^2 +999881065017543109136462 eta^3 z \[1.5ex]
& && -317254092617698017425280 eta^5 z -443761561344388063474665 eta^4 z \[1.5ex]
& && +82327155732241730770824 eta z -514623285385260545505123 eta^2 z \[1.5ex]
& && -1010535343560043404912120 eta^2 -357788302700438191196160 eta^5 \[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 eta^4 \[1.5ex]
& && +11818373349781028079 eta^3 +347370177721463765064153eta left. vphantomfrac1382112640 right) \[1.5ex]
& && times frac1(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
endalignat*
enddocument
edited Apr 7 at 10:10
answered Apr 5 at 9:11
AndreAndre
17618
17618
Do you think this fits the page margin?
– JouleV
Apr 5 at 9:14
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
Apr 5 at 9:22
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
Apr 7 at 0:32
OK. I will revise this.
– Andre
Apr 7 at 8:37
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
Apr 7 at 10:12
add a comment |
Do you think this fits the page margin?
– JouleV
Apr 5 at 9:14
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
Apr 5 at 9:22
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
Apr 7 at 0:32
OK. I will revise this.
– Andre
Apr 7 at 8:37
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
Apr 7 at 10:12
Do you think this fits the page margin?
– JouleV
Apr 5 at 9:14
Do you think this fits the page margin?
– JouleV
Apr 5 at 9:14
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
Apr 5 at 9:22
It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line.
– Andre
Apr 5 at 9:22
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
Apr 7 at 0:32
In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it.
– quark67
Apr 7 at 0:32
OK. I will revise this.
– Andre
Apr 7 at 8:37
OK. I will revise this.
– Andre
Apr 7 at 8:37
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
Apr 7 at 10:12
Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins).
– Andre
Apr 7 at 10:12
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483300%2fhow-to-format-a-long-polynomial%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_i,j$ and then adding a table to show the values.
– Mefitico
Apr 5 at 11:59
1
@Mefitico It is a nice option! Why don't you post an answer?
– JouleV
Apr 5 at 12:12
1
@JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!"
– Mefitico
Apr 5 at 12:19
@Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression.
– JouleV
Apr 5 at 12:23