Preprocess image data to classify objects based on shape Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsHow can I preprocess multi-page image inputs in a theano/lasagne network?TensorFlow and Categorical variablesApplying ConvNets to classify motion/video dataImage classification with Neural Network in RImage classification: Strategies for minimal input countKeras CNN image input and outputTest data predictions yield random results when making predictions from a saved modelData augmentation for the inputs of CNNs to identify flowersDoes CNN take care of zoom in images?Generating labeled dataset for training a neural network

Does using the Inspiration rules for character defects encourage My Guy Syndrome?

Who can become a wight?

Married in secret, can marital status in passport be changed at a later date?

Is there a verb for listening stealthily?

Weaponising the Grasp-at-a-Distance spell

How to produce a PS1 prompt in bash or ksh93 similar to tcsh

What came first? Venom as the movie or as the song?

Can the van der Waals coefficients be negative in the van der Waals equation for real gases?

Help Recreating a Table

How was Lagrange appointed professor of mathematics so early?

Why is one lightbulb in a string illuminated?

Why doesn't the university give past final exams' answers?

“Since the train was delayed for more than an hour, passengers were given a full refund.” – Why is there no article before “passengers”?

How do I deal with an erroneously large refund?

Can I ask an author to send me his ebook?

Why these surprising proportionalities of integrals involving odd zeta values?

Can this water damage be explained by lack of gutters and grading issues?

Why aren't these two solutions equivalent? Combinatorics problem

Putting Ant-Man on house arrest

Has a Nobel Peace laureate ever been accused of war crimes?

How can I introduce the names of fantasy creatures to the reader?

What is the ongoing value of the Kanban board to the developers as opposed to management

Can gravitational waves pass through a black hole?

How to break 信じようとしていただけかも知れない into separate parts?



Preprocess image data to classify objects based on shape



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsHow can I preprocess multi-page image inputs in a theano/lasagne network?TensorFlow and Categorical variablesApplying ConvNets to classify motion/video dataImage classification with Neural Network in RImage classification: Strategies for minimal input countKeras CNN image input and outputTest data predictions yield random results when making predictions from a saved modelData augmentation for the inputs of CNNs to identify flowersDoes CNN take care of zoom in images?Generating labeled dataset for training a neural network










2












$begingroup$


Currently I'm trying to build a neural network that is able to classify different types of bottles on an image solely based on the shape. The bottles have no label and at first I only used beer and wine bottles.
My goal is to compare a neural network that uses feature extraction to one that uses the raw images.



Example input image:



https://i.gyazo.com/c22151a4bee6146cc689fcb8358483dd.jpg



Using openCV to process the images, I tried to obtain only the edges of the bottles and classify the types based on the shape.
Currently, I am receiving the following result for the images:



https://i.gyazo.com/8554b06ebf6e8bd520d11222f70c77c5.png



In the next step, I cropped out each bottle in the image and split them into a 2d array of tiles (normally I try with 30x50 but in this image I show it with 10x20)



https://i.gyazo.com/28fb1bc0fa8d61b185ed2245db222cc8.png



For every tile I execute PCA to extract the eigenvectors. In the end I receive a matrix of 10x20 tiles, where each of them contains the direction of the line.
As you can see, the (0.0, 1.0) tuples are the vertical lines, and the (1.0, 0.0) tuples are the horizontal lines.



https://i.gyazo.com/bcd291535ea01b6392ab6aef6747de9d.png




Sorry for the long post, here is my question:




Is it possible to use this data do classify between wine and beer bottles? The shape of the neck of the bottle is different but is it representative for building a neural network?
I tried to train a model by calculating the gradient (arctan from the tuple) but i didn't manage to get some successful results. Does anyone have a idea how to pre-process the data for a neural network?



Is it better to use the cropped out images of the bottles as image data for the neural network?



I am thankful for any help as this is my first machine learning project and I would really like to get it working.










share|improve this question











$endgroup$
















    2












    $begingroup$


    Currently I'm trying to build a neural network that is able to classify different types of bottles on an image solely based on the shape. The bottles have no label and at first I only used beer and wine bottles.
    My goal is to compare a neural network that uses feature extraction to one that uses the raw images.



    Example input image:



    https://i.gyazo.com/c22151a4bee6146cc689fcb8358483dd.jpg



    Using openCV to process the images, I tried to obtain only the edges of the bottles and classify the types based on the shape.
    Currently, I am receiving the following result for the images:



    https://i.gyazo.com/8554b06ebf6e8bd520d11222f70c77c5.png



    In the next step, I cropped out each bottle in the image and split them into a 2d array of tiles (normally I try with 30x50 but in this image I show it with 10x20)



    https://i.gyazo.com/28fb1bc0fa8d61b185ed2245db222cc8.png



    For every tile I execute PCA to extract the eigenvectors. In the end I receive a matrix of 10x20 tiles, where each of them contains the direction of the line.
    As you can see, the (0.0, 1.0) tuples are the vertical lines, and the (1.0, 0.0) tuples are the horizontal lines.



    https://i.gyazo.com/bcd291535ea01b6392ab6aef6747de9d.png




    Sorry for the long post, here is my question:




    Is it possible to use this data do classify between wine and beer bottles? The shape of the neck of the bottle is different but is it representative for building a neural network?
    I tried to train a model by calculating the gradient (arctan from the tuple) but i didn't manage to get some successful results. Does anyone have a idea how to pre-process the data for a neural network?



    Is it better to use the cropped out images of the bottles as image data for the neural network?



    I am thankful for any help as this is my first machine learning project and I would really like to get it working.










    share|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      Currently I'm trying to build a neural network that is able to classify different types of bottles on an image solely based on the shape. The bottles have no label and at first I only used beer and wine bottles.
      My goal is to compare a neural network that uses feature extraction to one that uses the raw images.



      Example input image:



      https://i.gyazo.com/c22151a4bee6146cc689fcb8358483dd.jpg



      Using openCV to process the images, I tried to obtain only the edges of the bottles and classify the types based on the shape.
      Currently, I am receiving the following result for the images:



      https://i.gyazo.com/8554b06ebf6e8bd520d11222f70c77c5.png



      In the next step, I cropped out each bottle in the image and split them into a 2d array of tiles (normally I try with 30x50 but in this image I show it with 10x20)



      https://i.gyazo.com/28fb1bc0fa8d61b185ed2245db222cc8.png



      For every tile I execute PCA to extract the eigenvectors. In the end I receive a matrix of 10x20 tiles, where each of them contains the direction of the line.
      As you can see, the (0.0, 1.0) tuples are the vertical lines, and the (1.0, 0.0) tuples are the horizontal lines.



      https://i.gyazo.com/bcd291535ea01b6392ab6aef6747de9d.png




      Sorry for the long post, here is my question:




      Is it possible to use this data do classify between wine and beer bottles? The shape of the neck of the bottle is different but is it representative for building a neural network?
      I tried to train a model by calculating the gradient (arctan from the tuple) but i didn't manage to get some successful results. Does anyone have a idea how to pre-process the data for a neural network?



      Is it better to use the cropped out images of the bottles as image data for the neural network?



      I am thankful for any help as this is my first machine learning project and I would really like to get it working.










      share|improve this question











      $endgroup$




      Currently I'm trying to build a neural network that is able to classify different types of bottles on an image solely based on the shape. The bottles have no label and at first I only used beer and wine bottles.
      My goal is to compare a neural network that uses feature extraction to one that uses the raw images.



      Example input image:



      https://i.gyazo.com/c22151a4bee6146cc689fcb8358483dd.jpg



      Using openCV to process the images, I tried to obtain only the edges of the bottles and classify the types based on the shape.
      Currently, I am receiving the following result for the images:



      https://i.gyazo.com/8554b06ebf6e8bd520d11222f70c77c5.png



      In the next step, I cropped out each bottle in the image and split them into a 2d array of tiles (normally I try with 30x50 but in this image I show it with 10x20)



      https://i.gyazo.com/28fb1bc0fa8d61b185ed2245db222cc8.png



      For every tile I execute PCA to extract the eigenvectors. In the end I receive a matrix of 10x20 tiles, where each of them contains the direction of the line.
      As you can see, the (0.0, 1.0) tuples are the vertical lines, and the (1.0, 0.0) tuples are the horizontal lines.



      https://i.gyazo.com/bcd291535ea01b6392ab6aef6747de9d.png




      Sorry for the long post, here is my question:




      Is it possible to use this data do classify between wine and beer bottles? The shape of the neck of the bottle is different but is it representative for building a neural network?
      I tried to train a model by calculating the gradient (arctan from the tuple) but i didn't manage to get some successful results. Does anyone have a idea how to pre-process the data for a neural network?



      Is it better to use the cropped out images of the bottles as image data for the neural network?



      I am thankful for any help as this is my first machine learning project and I would really like to get it working.







      neural-network classification keras image-classification preprocessing






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Apr 5 at 6:01









      Ethan

      706625




      706625










      asked Apr 4 at 20:09









      EquintoxEquintox

      111




      111




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Well, you are trying so describe the image by predominant line directions and that really sounds fair but a bit of too much work. If you want to you can try a bit of data augmentation to increase your numbers of samples (Mainly affine transformations)



          Other possible useful feature would be descriptors such as:



          • SIFT

          • SURF

          • FAST

          • BRIEF

          You could try to describe those shapes using other geometrical functions such as skewness (fill the inside of the shape, consider the eigenvalues to define the major axis directions on PCA)



          Finally, bottles in the sample image look similar in shape and differ mainly in size, if your model uses resize it might become scale invariant and then your method will decrease too much of your shape information and give bad results.



          ------------------------------------------------------------------------------------



          Answering the comment bellow:




          This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20)




          This inserts a scale invariance to your model, that is good for processes where image-size vary either because of distance or camera resolution but: This throws alway scale information, that might not be helpful when the main discriminant on your image is scale-related.






          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks a lot for all these great and helpful tips. I will read myself into these topics and try it out. With my approach the sizes actually don't matter as i split each image into a 2d tile array of the same size.
            $endgroup$
            – Equintox
            Apr 5 at 13:34











          • $begingroup$
            That is a problem, since size is relevant part of this classification problem. You have to use really detailed shape information
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 13:38










          • $begingroup$
            This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20). For every Tile i execute a PCA which gives me the direction of the line of the tile. So in the end it doesnt matter if it is a big or small bottle or if my input img is 5000px or only 400px as the output of any is a 50x20 array of vectors
            $endgroup$
            – Equintox
            Apr 5 at 16:34











          • $begingroup$
            Check this video: youtube.com/…
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 16:59










          • $begingroup$
            thanks i will check it out :)
            $endgroup$
            – Equintox
            Apr 6 at 17:16











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48633%2fpreprocess-image-data-to-classify-objects-based-on-shape%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Well, you are trying so describe the image by predominant line directions and that really sounds fair but a bit of too much work. If you want to you can try a bit of data augmentation to increase your numbers of samples (Mainly affine transformations)



          Other possible useful feature would be descriptors such as:



          • SIFT

          • SURF

          • FAST

          • BRIEF

          You could try to describe those shapes using other geometrical functions such as skewness (fill the inside of the shape, consider the eigenvalues to define the major axis directions on PCA)



          Finally, bottles in the sample image look similar in shape and differ mainly in size, if your model uses resize it might become scale invariant and then your method will decrease too much of your shape information and give bad results.



          ------------------------------------------------------------------------------------



          Answering the comment bellow:




          This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20)




          This inserts a scale invariance to your model, that is good for processes where image-size vary either because of distance or camera resolution but: This throws alway scale information, that might not be helpful when the main discriminant on your image is scale-related.






          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks a lot for all these great and helpful tips. I will read myself into these topics and try it out. With my approach the sizes actually don't matter as i split each image into a 2d tile array of the same size.
            $endgroup$
            – Equintox
            Apr 5 at 13:34











          • $begingroup$
            That is a problem, since size is relevant part of this classification problem. You have to use really detailed shape information
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 13:38










          • $begingroup$
            This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20). For every Tile i execute a PCA which gives me the direction of the line of the tile. So in the end it doesnt matter if it is a big or small bottle or if my input img is 5000px or only 400px as the output of any is a 50x20 array of vectors
            $endgroup$
            – Equintox
            Apr 5 at 16:34











          • $begingroup$
            Check this video: youtube.com/…
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 16:59










          • $begingroup$
            thanks i will check it out :)
            $endgroup$
            – Equintox
            Apr 6 at 17:16















          1












          $begingroup$

          Well, you are trying so describe the image by predominant line directions and that really sounds fair but a bit of too much work. If you want to you can try a bit of data augmentation to increase your numbers of samples (Mainly affine transformations)



          Other possible useful feature would be descriptors such as:



          • SIFT

          • SURF

          • FAST

          • BRIEF

          You could try to describe those shapes using other geometrical functions such as skewness (fill the inside of the shape, consider the eigenvalues to define the major axis directions on PCA)



          Finally, bottles in the sample image look similar in shape and differ mainly in size, if your model uses resize it might become scale invariant and then your method will decrease too much of your shape information and give bad results.



          ------------------------------------------------------------------------------------



          Answering the comment bellow:




          This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20)




          This inserts a scale invariance to your model, that is good for processes where image-size vary either because of distance or camera resolution but: This throws alway scale information, that might not be helpful when the main discriminant on your image is scale-related.






          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks a lot for all these great and helpful tips. I will read myself into these topics and try it out. With my approach the sizes actually don't matter as i split each image into a 2d tile array of the same size.
            $endgroup$
            – Equintox
            Apr 5 at 13:34











          • $begingroup$
            That is a problem, since size is relevant part of this classification problem. You have to use really detailed shape information
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 13:38










          • $begingroup$
            This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20). For every Tile i execute a PCA which gives me the direction of the line of the tile. So in the end it doesnt matter if it is a big or small bottle or if my input img is 5000px or only 400px as the output of any is a 50x20 array of vectors
            $endgroup$
            – Equintox
            Apr 5 at 16:34











          • $begingroup$
            Check this video: youtube.com/…
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 16:59










          • $begingroup$
            thanks i will check it out :)
            $endgroup$
            – Equintox
            Apr 6 at 17:16













          1












          1








          1





          $begingroup$

          Well, you are trying so describe the image by predominant line directions and that really sounds fair but a bit of too much work. If you want to you can try a bit of data augmentation to increase your numbers of samples (Mainly affine transformations)



          Other possible useful feature would be descriptors such as:



          • SIFT

          • SURF

          • FAST

          • BRIEF

          You could try to describe those shapes using other geometrical functions such as skewness (fill the inside of the shape, consider the eigenvalues to define the major axis directions on PCA)



          Finally, bottles in the sample image look similar in shape and differ mainly in size, if your model uses resize it might become scale invariant and then your method will decrease too much of your shape information and give bad results.



          ------------------------------------------------------------------------------------



          Answering the comment bellow:




          This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20)




          This inserts a scale invariance to your model, that is good for processes where image-size vary either because of distance or camera resolution but: This throws alway scale information, that might not be helpful when the main discriminant on your image is scale-related.






          share|improve this answer











          $endgroup$



          Well, you are trying so describe the image by predominant line directions and that really sounds fair but a bit of too much work. If you want to you can try a bit of data augmentation to increase your numbers of samples (Mainly affine transformations)



          Other possible useful feature would be descriptors such as:



          • SIFT

          • SURF

          • FAST

          • BRIEF

          You could try to describe those shapes using other geometrical functions such as skewness (fill the inside of the shape, consider the eigenvalues to define the major axis directions on PCA)



          Finally, bottles in the sample image look similar in shape and differ mainly in size, if your model uses resize it might become scale invariant and then your method will decrease too much of your shape information and give bad results.



          ------------------------------------------------------------------------------------



          Answering the comment bellow:




          This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20)




          This inserts a scale invariance to your model, that is good for processes where image-size vary either because of distance or camera resolution but: This throws alway scale information, that might not be helpful when the main discriminant on your image is scale-related.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Apr 5 at 16:57

























          answered Apr 4 at 21:59









          Pedro Henrique MonfortePedro Henrique Monforte

          559218




          559218











          • $begingroup$
            Thanks a lot for all these great and helpful tips. I will read myself into these topics and try it out. With my approach the sizes actually don't matter as i split each image into a 2d tile array of the same size.
            $endgroup$
            – Equintox
            Apr 5 at 13:34











          • $begingroup$
            That is a problem, since size is relevant part of this classification problem. You have to use really detailed shape information
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 13:38










          • $begingroup$
            This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20). For every Tile i execute a PCA which gives me the direction of the line of the tile. So in the end it doesnt matter if it is a big or small bottle or if my input img is 5000px or only 400px as the output of any is a 50x20 array of vectors
            $endgroup$
            – Equintox
            Apr 5 at 16:34











          • $begingroup$
            Check this video: youtube.com/…
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 16:59










          • $begingroup$
            thanks i will check it out :)
            $endgroup$
            – Equintox
            Apr 6 at 17:16
















          • $begingroup$
            Thanks a lot for all these great and helpful tips. I will read myself into these topics and try it out. With my approach the sizes actually don't matter as i split each image into a 2d tile array of the same size.
            $endgroup$
            – Equintox
            Apr 5 at 13:34











          • $begingroup$
            That is a problem, since size is relevant part of this classification problem. You have to use really detailed shape information
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 13:38










          • $begingroup$
            This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20). For every Tile i execute a PCA which gives me the direction of the line of the tile. So in the end it doesnt matter if it is a big or small bottle or if my input img is 5000px or only 400px as the output of any is a 50x20 array of vectors
            $endgroup$
            – Equintox
            Apr 5 at 16:34











          • $begingroup$
            Check this video: youtube.com/…
            $endgroup$
            – Pedro Henrique Monforte
            Apr 5 at 16:59










          • $begingroup$
            thanks i will check it out :)
            $endgroup$
            – Equintox
            Apr 6 at 17:16















          $begingroup$
          Thanks a lot for all these great and helpful tips. I will read myself into these topics and try it out. With my approach the sizes actually don't matter as i split each image into a 2d tile array of the same size.
          $endgroup$
          – Equintox
          Apr 5 at 13:34





          $begingroup$
          Thanks a lot for all these great and helpful tips. I will read myself into these topics and try it out. With my approach the sizes actually don't matter as i split each image into a 2d tile array of the same size.
          $endgroup$
          – Equintox
          Apr 5 at 13:34













          $begingroup$
          That is a problem, since size is relevant part of this classification problem. You have to use really detailed shape information
          $endgroup$
          – Pedro Henrique Monforte
          Apr 5 at 13:38




          $begingroup$
          That is a problem, since size is relevant part of this classification problem. You have to use really detailed shape information
          $endgroup$
          – Pedro Henrique Monforte
          Apr 5 at 13:38












          $begingroup$
          This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20). For every Tile i execute a PCA which gives me the direction of the line of the tile. So in the end it doesnt matter if it is a big or small bottle or if my input img is 5000px or only 400px as the output of any is a 50x20 array of vectors
          $endgroup$
          – Equintox
          Apr 5 at 16:34





          $begingroup$
          This is why i tried to do it with my approach of cropping out each bottle and split them into a 2d array of tiles (e.g. 50x20). For every Tile i execute a PCA which gives me the direction of the line of the tile. So in the end it doesnt matter if it is a big or small bottle or if my input img is 5000px or only 400px as the output of any is a 50x20 array of vectors
          $endgroup$
          – Equintox
          Apr 5 at 16:34













          $begingroup$
          Check this video: youtube.com/…
          $endgroup$
          – Pedro Henrique Monforte
          Apr 5 at 16:59




          $begingroup$
          Check this video: youtube.com/…
          $endgroup$
          – Pedro Henrique Monforte
          Apr 5 at 16:59












          $begingroup$
          thanks i will check it out :)
          $endgroup$
          – Equintox
          Apr 6 at 17:16




          $begingroup$
          thanks i will check it out :)
          $endgroup$
          – Equintox
          Apr 6 at 17:16

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48633%2fpreprocess-image-data-to-classify-objects-based-on-shape%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?