Sequence to sequence RNN model, maximum number of training sizeImage clustering by similarity measurement (CW-SSIM)Time series prediction without sliding windowPreparing, Scaling and Selecting from a combination of numerical and categorical featuresRight Way to Input Text Data in Keras Auto EncoderHow to download dynamic files created during work on Google Colab?Keras val_acc unchanging when training (same label assigned to all images)Can you have too uniform test data in a feedforward neural network?Memory problems with smaller CNNUsing categorial_crossentropy to train a model in kerasApply Labeled LDA on large data

Consistent Linux device enumeration

What is it called to attack a person then say something uplifting?

The garden where everything is possible

How do I tell my boss that I'm quitting in 15 days (a colleague left this week)

Naive definition of treewidth

What is this high flying aircraft over Pennsylvania?

Do I have to know the General Relativity theory to understand the concept of inertial frame?

Why didn’t Eve recognize the little cockroach as a living organism?

What properties make a magic weapon befit a Rogue more than a DEX-based Fighter?

Do you waste sorcery points if you try to apply metamagic to a spell from a scroll but fail to cast it?

Distinction between 地平線 【ちへいせん】 and 水平線 【すいへいせん】

Why do Radio Buttons not fill the entire outer circle?

Why is the sun approximated as a black body at ~ 5800 K?

Pre-Employment Background Check With Consent For Future Checks

If Captain Marvel (MCU) marries a human male, will they have human or Kree children?

Why didn't Voldemort know what Grindelwald looked like?

Writing in a Christian voice

How much do grades matter for a future academia position?

How to predict the next number in a series while having additional series of data that might affect it?

Typing CO_2 easily

Reason why a kingside attack is not justified

Limit max CPU usage SQL SERVER with WSRM

Showing mass murder in a kid's book

Efficiently query two properties QGIS spatialite



Sequence to sequence RNN model, maximum number of training size


Image clustering by similarity measurement (CW-SSIM)Time series prediction without sliding windowPreparing, Scaling and Selecting from a combination of numerical and categorical featuresRight Way to Input Text Data in Keras Auto EncoderHow to download dynamic files created during work on Google Colab?Keras val_acc unchanging when training (same label assigned to all images)Can you have too uniform test data in a feedforward neural network?Memory problems with smaller CNNUsing categorial_crossentropy to train a model in kerasApply Labeled LDA on large data













0












$begingroup$


So when running this example script from Keras repo (https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py), I found that we can easily run into out of memory for the input or output one-hot encoding in this code:



encoder_input_data = np.zeros(
(len(input_texts), max_encoder_seq_length, num_encoder_tokens),
dtype='float32')
decoder_input_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
decoder_target_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')


When I have a huge size of training samples, this one-hot does not fit into memory. Is there way to handle this issue?



UPDATE:
I changed float32 to uint, but thats about the smallest one hot array can get.










share|improve this question











$endgroup$




bumped to the homepage by Community 2 days ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    0












    $begingroup$


    So when running this example script from Keras repo (https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py), I found that we can easily run into out of memory for the input or output one-hot encoding in this code:



    encoder_input_data = np.zeros(
    (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
    dtype='float32')
    decoder_input_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')
    decoder_target_data = np.zeros(
    (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
    dtype='float32')


    When I have a huge size of training samples, this one-hot does not fit into memory. Is there way to handle this issue?



    UPDATE:
    I changed float32 to uint, but thats about the smallest one hot array can get.










    share|improve this question











    $endgroup$




    bumped to the homepage by Community 2 days ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      0












      0








      0





      $begingroup$


      So when running this example script from Keras repo (https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py), I found that we can easily run into out of memory for the input or output one-hot encoding in this code:



      encoder_input_data = np.zeros(
      (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
      dtype='float32')
      decoder_input_data = np.zeros(
      (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
      dtype='float32')
      decoder_target_data = np.zeros(
      (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
      dtype='float32')


      When I have a huge size of training samples, this one-hot does not fit into memory. Is there way to handle this issue?



      UPDATE:
      I changed float32 to uint, but thats about the smallest one hot array can get.










      share|improve this question











      $endgroup$




      So when running this example script from Keras repo (https://github.com/keras-team/keras/blob/master/examples/lstm_seq2seq.py), I found that we can easily run into out of memory for the input or output one-hot encoding in this code:



      encoder_input_data = np.zeros(
      (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
      dtype='float32')
      decoder_input_data = np.zeros(
      (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
      dtype='float32')
      decoder_target_data = np.zeros(
      (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
      dtype='float32')


      When I have a huge size of training samples, this one-hot does not fit into memory. Is there way to handle this issue?



      UPDATE:
      I changed float32 to uint, but thats about the smallest one hot array can get.







      python deep-learning numpy






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Feb 15 at 15:06







      eugen

















      asked Feb 15 at 14:30









      eugeneugen

      11




      11





      bumped to the homepage by Community 2 days ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 2 days ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          so I found a solution by dividing input training data into small batches and it did the trick. Here is the code:



          divideby=1000
          for j in range(divideby):
          start=j*len(input_texts)/divideby
          end=(j+1)*len(input_texts)/divideby if j<divideby+1 else -1

          encoder_input_data = np.zeros(
          (end-start, max_encoder_seq_length, num_encoder_tokens),
          dtype='uint8') # size_of_training_samples, max_length_word_measured_in_characters,number_of_unique_chars,
          decoder_input_data = np.zeros(
          (end-start, max_decoder_seq_length, num_decoder_tokens),
          dtype='uint8')
          decoder_target_data = np.zeros(
          (end-start, max_decoder_seq_length, num_decoder_tokens),
          dtype='uint8')

          for i, (input_text, target_text) in enumerate(zip(input_texts[start:end], target_texts[start:end])):
          for t, char in enumerate(input_text.split(splitby)):
          encoder_input_data[i, t, input_token_index[char]] = 1.
          for t, char in enumerate(target_text.split(splitby)):
          # decoder_target_data is ahead of decoder_input_data by one timestep
          decoder_input_data[i, t, target_token_index[char]] = 1.
          if t > 0:
          # decoder_target_data will be ahead by one timestep
          # and will not include the start character.
          decoder_target_data[i, t - 1, target_token_index[char]] = 1.

          model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)
          ```





          share|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45639%2fsequence-to-sequence-rnn-model-maximum-number-of-training-size%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            so I found a solution by dividing input training data into small batches and it did the trick. Here is the code:



            divideby=1000
            for j in range(divideby):
            start=j*len(input_texts)/divideby
            end=(j+1)*len(input_texts)/divideby if j<divideby+1 else -1

            encoder_input_data = np.zeros(
            (end-start, max_encoder_seq_length, num_encoder_tokens),
            dtype='uint8') # size_of_training_samples, max_length_word_measured_in_characters,number_of_unique_chars,
            decoder_input_data = np.zeros(
            (end-start, max_decoder_seq_length, num_decoder_tokens),
            dtype='uint8')
            decoder_target_data = np.zeros(
            (end-start, max_decoder_seq_length, num_decoder_tokens),
            dtype='uint8')

            for i, (input_text, target_text) in enumerate(zip(input_texts[start:end], target_texts[start:end])):
            for t, char in enumerate(input_text.split(splitby)):
            encoder_input_data[i, t, input_token_index[char]] = 1.
            for t, char in enumerate(target_text.split(splitby)):
            # decoder_target_data is ahead of decoder_input_data by one timestep
            decoder_input_data[i, t, target_token_index[char]] = 1.
            if t > 0:
            # decoder_target_data will be ahead by one timestep
            # and will not include the start character.
            decoder_target_data[i, t - 1, target_token_index[char]] = 1.

            model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
            batch_size=batch_size,
            epochs=epochs,
            validation_split=0.2)
            ```





            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              so I found a solution by dividing input training data into small batches and it did the trick. Here is the code:



              divideby=1000
              for j in range(divideby):
              start=j*len(input_texts)/divideby
              end=(j+1)*len(input_texts)/divideby if j<divideby+1 else -1

              encoder_input_data = np.zeros(
              (end-start, max_encoder_seq_length, num_encoder_tokens),
              dtype='uint8') # size_of_training_samples, max_length_word_measured_in_characters,number_of_unique_chars,
              decoder_input_data = np.zeros(
              (end-start, max_decoder_seq_length, num_decoder_tokens),
              dtype='uint8')
              decoder_target_data = np.zeros(
              (end-start, max_decoder_seq_length, num_decoder_tokens),
              dtype='uint8')

              for i, (input_text, target_text) in enumerate(zip(input_texts[start:end], target_texts[start:end])):
              for t, char in enumerate(input_text.split(splitby)):
              encoder_input_data[i, t, input_token_index[char]] = 1.
              for t, char in enumerate(target_text.split(splitby)):
              # decoder_target_data is ahead of decoder_input_data by one timestep
              decoder_input_data[i, t, target_token_index[char]] = 1.
              if t > 0:
              # decoder_target_data will be ahead by one timestep
              # and will not include the start character.
              decoder_target_data[i, t - 1, target_token_index[char]] = 1.

              model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
              batch_size=batch_size,
              epochs=epochs,
              validation_split=0.2)
              ```





              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                so I found a solution by dividing input training data into small batches and it did the trick. Here is the code:



                divideby=1000
                for j in range(divideby):
                start=j*len(input_texts)/divideby
                end=(j+1)*len(input_texts)/divideby if j<divideby+1 else -1

                encoder_input_data = np.zeros(
                (end-start, max_encoder_seq_length, num_encoder_tokens),
                dtype='uint8') # size_of_training_samples, max_length_word_measured_in_characters,number_of_unique_chars,
                decoder_input_data = np.zeros(
                (end-start, max_decoder_seq_length, num_decoder_tokens),
                dtype='uint8')
                decoder_target_data = np.zeros(
                (end-start, max_decoder_seq_length, num_decoder_tokens),
                dtype='uint8')

                for i, (input_text, target_text) in enumerate(zip(input_texts[start:end], target_texts[start:end])):
                for t, char in enumerate(input_text.split(splitby)):
                encoder_input_data[i, t, input_token_index[char]] = 1.
                for t, char in enumerate(target_text.split(splitby)):
                # decoder_target_data is ahead of decoder_input_data by one timestep
                decoder_input_data[i, t, target_token_index[char]] = 1.
                if t > 0:
                # decoder_target_data will be ahead by one timestep
                # and will not include the start character.
                decoder_target_data[i, t - 1, target_token_index[char]] = 1.

                model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
                batch_size=batch_size,
                epochs=epochs,
                validation_split=0.2)
                ```





                share|improve this answer









                $endgroup$



                so I found a solution by dividing input training data into small batches and it did the trick. Here is the code:



                divideby=1000
                for j in range(divideby):
                start=j*len(input_texts)/divideby
                end=(j+1)*len(input_texts)/divideby if j<divideby+1 else -1

                encoder_input_data = np.zeros(
                (end-start, max_encoder_seq_length, num_encoder_tokens),
                dtype='uint8') # size_of_training_samples, max_length_word_measured_in_characters,number_of_unique_chars,
                decoder_input_data = np.zeros(
                (end-start, max_decoder_seq_length, num_decoder_tokens),
                dtype='uint8')
                decoder_target_data = np.zeros(
                (end-start, max_decoder_seq_length, num_decoder_tokens),
                dtype='uint8')

                for i, (input_text, target_text) in enumerate(zip(input_texts[start:end], target_texts[start:end])):
                for t, char in enumerate(input_text.split(splitby)):
                encoder_input_data[i, t, input_token_index[char]] = 1.
                for t, char in enumerate(target_text.split(splitby)):
                # decoder_target_data is ahead of decoder_input_data by one timestep
                decoder_input_data[i, t, target_token_index[char]] = 1.
                if t > 0:
                # decoder_target_data will be ahead by one timestep
                # and will not include the start character.
                decoder_target_data[i, t - 1, target_token_index[char]] = 1.

                model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
                batch_size=batch_size,
                epochs=epochs,
                validation_split=0.2)
                ```






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Feb 15 at 16:13









                eugeneugen

                11




                11



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45639%2fsequence-to-sequence-rnn-model-maximum-number-of-training-size%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Marja Vauras Lähteet | Aiheesta muualla | NavigointivalikkoMarja Vauras Turun yliopiston tutkimusportaalissaInfobox OKSuomalaisen Tiedeakatemian varsinaiset jäsenetKasvatustieteiden tiedekunnan dekaanit ja muu johtoMarja VaurasKoulutusvienti on kestävyys- ja ketteryyslaji (2.5.2017)laajentamallaWorldCat Identities0000 0001 0855 9405n86069603utb201588738523620927

                    Which is better: GPT or RelGAN for text generation?2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task

                    Is this part of the description of the Archfey warlock's Misty Escape feature redundant?When is entropic ward considered “used”?How does the reaction timing work for Wrath of the Storm? Can it potentially prevent the damage from the triggering attack?Does the Dark Arts Archlich warlock patrons's Arcane Invisibility activate every time you cast a level 1+ spell?When attacking while invisible, when exactly does invisibility break?Can I cast Hellish Rebuke on my turn?Do I have to “pre-cast” a reaction spell in order for it to be triggered?What happens if a Player Misty Escapes into an Invisible CreatureCan a reaction interrupt multiattack?Does the Fiend-patron warlock's Hurl Through Hell feature dispel effects that require the target to be on the same plane as the caster?What are you allowed to do while using the Warlock's Eldritch Master feature?