Shortcut for value of $f(1)$ where $f(x) = int e^x left(arctan x + frac 2x(1+x^2)^2right),dx$$int sqrtfracxx+1dx$Integrate $ int frac e^arctan(x)(1+x^2)^frac32 dx $Problem with definite integral $int _0^fracpi 2sin left(arctan left(xright)+xright)dx$$int frac2x9x^2+3dx=?$Integrate $int frac11+arctan(x)dx$A shortcut for solving $int fracdx(sin x+cos x)^3$Calculate $int_0^1fraccos(arctan x)sqrtxdx$About the integral $intarctanleft(frac1sinh^2 xright)dx$, some idea or feedbackFind $intarctan x,mathrm dx$ without substitutionHow can I solve $int_0^1fracarctan(x^2)1+x^2,mathrm dx$?
How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)
What makes Graph invariants so useful/important?
Motorized valve interfering with button?
Concept of linear mappings are confusing me
Why don't electron-positron collisions release infinite energy?
Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).
XeLaTeX and pdfLaTeX ignore hyphenation
How to make payment on the internet without leaving a money trail?
How does one intimidate enemies without having the capacity for violence?
Extreme, but not acceptable situation and I can't start the work tomorrow morning
DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?
Banach space and Hilbert space topology
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
How to type dʒ symbol (IPA) on Mac?
If Manufacturer spice model and Datasheet give different values which should I use?
Why Is Death Allowed In the Matrix?
How to calculate implied correlation via observed market price (Margrabe option)
Copycat chess is back
Are white and non-white police officers equally likely to kill black suspects?
Is it possible to make sharp wind that can cut stuff from afar?
Prevent a directory in /tmp from being deleted
Download, install and reboot computer at night if needed
What is the command to reset a PC without deleting any files
How can I fix this gap between bookcases I made?
Shortcut for value of $f(1)$ where $f(x) = int e^x left(arctan x + frac 2x(1+x^2)^2right),dx$
$int sqrtfracxx+1dx$Integrate $ int frac e^arctan(x)(1+x^2)^frac32 dx $Problem with definite integral $int _0^fracpi 2sin left(arctan left(xright)+xright)dx$$int frac2x9x^2+3dx=?$Integrate $int frac11+arctan(x)dx$A shortcut for solving $int fracdx(sin x+cos x)^3$Calculate $int_0^1fraccos(arctan x)sqrtxdx$About the integral $intarctanleft(frac1sinh^2 xright)dx$, some idea or feedbackFind $intarctan x,mathrm dx$ without substitutionHow can I solve $int_0^1fracarctan(x^2)1+x^2,mathrm dx$?
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
|
show 6 more comments
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
|
show 6 more comments
$begingroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
$endgroup$
If $$f(x) = int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?
This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to finding this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Mar 28 at 8:09
YuiTo Cheng
2,3084937
2,3084937
asked Mar 28 at 2:28
HemaHema
6621213
6621213
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
|
show 6 more comments
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
2
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-f1-where-fx-int-ex-left-arctan-x-frac-2x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
add a comment |
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
add a comment |
$begingroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
$endgroup$
With $g(t) = arctan(t) = tan^-1(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$
As noted in comments, $f(1)$ is actually $fracepi4 - frace2 +1$.
answered Mar 28 at 2:51
Catalin ZaraCatalin Zara
3,827514
3,827514
add a comment |
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
add a comment |
$begingroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
$endgroup$
Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$
Now for $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx $$, do the following manipulation:
$$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx =int e^x biggr(arctan x - frac 11+x^2+frac 11+x^2+frac 2x(1+x^2)^2biggr),dx. $$
Note that $$biggr(arctan x - frac 11+x^2biggr)'=frac 11+x^2+frac 2x(1+x^2)^2. $$
Then by the above formula $$int e^x biggr(arctan x + frac 2x(1+x^2)^2biggr),dx=e^x biggr(arctan x - frac 11+x^2biggr)+c.$$
So $$f (1)=biggr[e^x biggr(arctan x - frac 11+x^2biggr)biggr]_0^1=frac epi4-frac e2+1. $$
answered Mar 28 at 3:43
Thomas ShelbyThomas Shelby
4,7362727
4,7362727
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-f1-where-fx-int-ex-left-arctan-x-frac-2x%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
Mar 28 at 2:50
$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
Mar 28 at 2:50
$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
Mar 28 at 2:52
$begingroup$
What is JEE...?
$endgroup$
– amsmath
Mar 28 at 2:54
$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
Mar 28 at 3:47