What are the G forces leaving Earth orbit? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)If the Apollo mandate were delivered today, would the mission vehicle(s) and profile be similar?Launch Accelerations: Values, historyHas in-space refueling been done?What does burnt Aerozine-50/N2O4 smell like?What is the escape velocity of Saturn at Enceladus distance?Would the Saturn V have been able to send more mass to TLI if it had a lower earth parking orbit?In what ways would the high elliptical orbit of Apollo “E missions” simulate lunar missions?Hypersonic Inflatable Aerodynamic Decelerator entry to Mars' atmosphereHow long is the Apollo Lunar Module extraction window?Has any human had the capability of leaving the Solar System?

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

Maximum summed subsequences with non-adjacent items

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

Hangman Game with C++

How many time has Arya actually used Needle?

How to pronounce 伝統色

How to run automated tests after each commit?

Who can remove European Commissioners?

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

Do wooden building fires get hotter than 600°C?

AppleTVs create a chatty alternate WiFi network

Take 2! Is this homebrew Lady of Pain warlock patron balanced?

Antipodal Land Area Calculation

Crossing US/Canada Border for less than 24 hours

Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?

What to do with repeated rejections for phd position

Significance of Cersei's obsession with elephants?

Amount of permutations on an NxNxN Rubik's Cube

What is "gratricide"?

Would it be easier to apply for a UK visa if there is a host family to sponsor for you in going there?

Is CEO the "profession" with the most psychopaths?

How often does castling occur in grandmaster games?

What is this round thing on the pantry door in The Shining



What are the G forces leaving Earth orbit?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)If the Apollo mandate were delivered today, would the mission vehicle(s) and profile be similar?Launch Accelerations: Values, historyHas in-space refueling been done?What does burnt Aerozine-50/N2O4 smell like?What is the escape velocity of Saturn at Enceladus distance?Would the Saturn V have been able to send more mass to TLI if it had a lower earth parking orbit?In what ways would the high elliptical orbit of Apollo “E missions” simulate lunar missions?Hypersonic Inflatable Aerodynamic Decelerator entry to Mars' atmosphereHow long is the Apollo Lunar Module extraction window?Has any human had the capability of leaving the Solar System?










6












$begingroup$


What were the G forces experienced by the Apollo astronauts during the translunar injection burn? Was there a lot of vibrations during the TLI burn?



Is there estimates of the G forces an astronaut would experience leaving Earth orbit to go to Mars?










share|improve this question









$endgroup$











  • $begingroup$
    Many years ago I heard a speech of a german shuttle astronaut. He said there were very heavy vibrations caused by the solid fuel boosters. After the separation of the boosters the cryogenic liquid fuel engines thrust felt silky smooth. So the TLI burn of the third stage of the Saturn V should be smooth too.
    $endgroup$
    – Uwe
    Apr 2 at 20:17















6












$begingroup$


What were the G forces experienced by the Apollo astronauts during the translunar injection burn? Was there a lot of vibrations during the TLI burn?



Is there estimates of the G forces an astronaut would experience leaving Earth orbit to go to Mars?










share|improve this question









$endgroup$











  • $begingroup$
    Many years ago I heard a speech of a german shuttle astronaut. He said there were very heavy vibrations caused by the solid fuel boosters. After the separation of the boosters the cryogenic liquid fuel engines thrust felt silky smooth. So the TLI burn of the third stage of the Saturn V should be smooth too.
    $endgroup$
    – Uwe
    Apr 2 at 20:17













6












6








6





$begingroup$


What were the G forces experienced by the Apollo astronauts during the translunar injection burn? Was there a lot of vibrations during the TLI burn?



Is there estimates of the G forces an astronaut would experience leaving Earth orbit to go to Mars?










share|improve this question









$endgroup$




What were the G forces experienced by the Apollo astronauts during the translunar injection burn? Was there a lot of vibrations during the TLI burn?



Is there estimates of the G forces an astronaut would experience leaving Earth orbit to go to Mars?







apollo-program escape-velocity trans-lunar-injection






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Apr 2 at 19:31









Bob516Bob516

2,0631423




2,0631423











  • $begingroup$
    Many years ago I heard a speech of a german shuttle astronaut. He said there were very heavy vibrations caused by the solid fuel boosters. After the separation of the boosters the cryogenic liquid fuel engines thrust felt silky smooth. So the TLI burn of the third stage of the Saturn V should be smooth too.
    $endgroup$
    – Uwe
    Apr 2 at 20:17
















  • $begingroup$
    Many years ago I heard a speech of a german shuttle astronaut. He said there were very heavy vibrations caused by the solid fuel boosters. After the separation of the boosters the cryogenic liquid fuel engines thrust felt silky smooth. So the TLI burn of the third stage of the Saturn V should be smooth too.
    $endgroup$
    – Uwe
    Apr 2 at 20:17















$begingroup$
Many years ago I heard a speech of a german shuttle astronaut. He said there were very heavy vibrations caused by the solid fuel boosters. After the separation of the boosters the cryogenic liquid fuel engines thrust felt silky smooth. So the TLI burn of the third stage of the Saturn V should be smooth too.
$endgroup$
– Uwe
Apr 2 at 20:17




$begingroup$
Many years ago I heard a speech of a german shuttle astronaut. He said there were very heavy vibrations caused by the solid fuel boosters. After the separation of the boosters the cryogenic liquid fuel engines thrust felt silky smooth. So the TLI burn of the third stage of the Saturn V should be smooth too.
$endgroup$
– Uwe
Apr 2 at 20:17










2 Answers
2






active

oldest

votes


















9












$begingroup$

Earth departure burns can be relatively leisurely, so the acceleration tends not to be extremely high. There is some tradeoff between doing the burn over a short timeframe to maximize the Oberth effect, versus using a smaller, lighter engine and maximizing crew comfort.



At the start of the Apollo TLI, acceleration would be about 0.6g, increasing as fuel mass is exhausted, and finishing up around 1.45g, according to this graph from the Apollo 11 flight evaluation report:



enter image description here



For a Mars mission, it would depend entirely on the design of the spacecraft doing it, but it probably would be comparable.



There was some vibration noticed by the crew during the S-IVB burns. For subjective impressions, the best source is the crew debriefings done after each mission, though in this case they're surprisingly varied.



In the debriefing for Apollo 11, Aldrin said it was a "rougher ride than the S-II" (second stage, which presumably 'averaged out' the roughness of each individual engine across the set of five, and had more structure between the engines and the crew cabin to damp vibrations through) and Armstrong said it was "a little rattly all the time". (These comments were in regard to the orbital insertion phase of the S-IVB but were probably applicable to the TLI as well.)



The crew of Apollo 10 found it a little rougher, with Stafford saying "Where the S-IC stage and the S-II stage were completely smooth, the S-IVB growled, rattled, and rolled during the whole burn. But you could actually feel little vibrations."



Conrad on Apollo 12 was more positive: "S-IVB ignition was smooth. The ride on the S-IVB was very nice."






share|improve this answer











$endgroup$




















    7












    $begingroup$

    enter image description here
    This image is from Quora because the picture I took from my Saturn V Haynes Manual was too big to upload. Anyway, you can see that the acceleration is by no means constant, but it peaks at just under 40 m/s^2, or around 4g. And it was a wild ride. In particular, when the first burn ended the entire structure, which had been compressed, snapped back. According to the Haynes Manual, astronaut Fred Haise said that when the first stage cut out he thought he was going through the instrument panel.





    What were the G forces experienced by the Apollo astronauts during the translunar injection burn?




    My Haynes doesn't seem to give specific figures, but the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph above leaves off and increase somewhat as the fuel was depleted. It would also jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.




    Space Shuttle, and I believe others like Soyuz, are designed to give a gentler ride, no more than 3g.



    For a trip to Mars there would be two stages--getting into orbit, and getting to Mars. Getting into orbit would be like anything, probably around 3g. Getting to Mars would be a lot gentler, but depending on the technology. Like the ~6 m/s^2 of the Saturn's S-IVB stage followed by a lot of coasting--getting off the ground is a big deal, but once you're up there engines would be designed for efficiency rather than thrust. Or something like an ion engine with a barely perceptible acceleration for months at a time. There's nothing close to being ready to go yet, so it's too soon to say.






    share|improve this answer











    $endgroup$








    • 3




      $begingroup$
      That graph cuts off before the part the question is asking about -- it shows every burn prior to the Trans-Lunar Injection burn.
      $endgroup$
      – Mark
      Apr 2 at 21:26






    • 1




      $begingroup$
      Dangit! I guess I didn't notice that. And my Haynes doesn't seem to give specific figures. But the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph left off and increased a bit as the fuel was depleted, then jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.
      $endgroup$
      – Greg
      Apr 2 at 21:37










    • $begingroup$
      @Greg I've added your comment back into your answer, does that look okay?
      $endgroup$
      – uhoh
      Apr 2 at 22:42










    • $begingroup$
      uhoh That looks fine, thanks.
      $endgroup$
      – Greg
      Apr 3 at 20:54











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "508"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35244%2fwhat-are-the-g-forces-leaving-earth-orbit%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    9












    $begingroup$

    Earth departure burns can be relatively leisurely, so the acceleration tends not to be extremely high. There is some tradeoff between doing the burn over a short timeframe to maximize the Oberth effect, versus using a smaller, lighter engine and maximizing crew comfort.



    At the start of the Apollo TLI, acceleration would be about 0.6g, increasing as fuel mass is exhausted, and finishing up around 1.45g, according to this graph from the Apollo 11 flight evaluation report:



    enter image description here



    For a Mars mission, it would depend entirely on the design of the spacecraft doing it, but it probably would be comparable.



    There was some vibration noticed by the crew during the S-IVB burns. For subjective impressions, the best source is the crew debriefings done after each mission, though in this case they're surprisingly varied.



    In the debriefing for Apollo 11, Aldrin said it was a "rougher ride than the S-II" (second stage, which presumably 'averaged out' the roughness of each individual engine across the set of five, and had more structure between the engines and the crew cabin to damp vibrations through) and Armstrong said it was "a little rattly all the time". (These comments were in regard to the orbital insertion phase of the S-IVB but were probably applicable to the TLI as well.)



    The crew of Apollo 10 found it a little rougher, with Stafford saying "Where the S-IC stage and the S-II stage were completely smooth, the S-IVB growled, rattled, and rolled during the whole burn. But you could actually feel little vibrations."



    Conrad on Apollo 12 was more positive: "S-IVB ignition was smooth. The ride on the S-IVB was very nice."






    share|improve this answer











    $endgroup$

















      9












      $begingroup$

      Earth departure burns can be relatively leisurely, so the acceleration tends not to be extremely high. There is some tradeoff between doing the burn over a short timeframe to maximize the Oberth effect, versus using a smaller, lighter engine and maximizing crew comfort.



      At the start of the Apollo TLI, acceleration would be about 0.6g, increasing as fuel mass is exhausted, and finishing up around 1.45g, according to this graph from the Apollo 11 flight evaluation report:



      enter image description here



      For a Mars mission, it would depend entirely on the design of the spacecraft doing it, but it probably would be comparable.



      There was some vibration noticed by the crew during the S-IVB burns. For subjective impressions, the best source is the crew debriefings done after each mission, though in this case they're surprisingly varied.



      In the debriefing for Apollo 11, Aldrin said it was a "rougher ride than the S-II" (second stage, which presumably 'averaged out' the roughness of each individual engine across the set of five, and had more structure between the engines and the crew cabin to damp vibrations through) and Armstrong said it was "a little rattly all the time". (These comments were in regard to the orbital insertion phase of the S-IVB but were probably applicable to the TLI as well.)



      The crew of Apollo 10 found it a little rougher, with Stafford saying "Where the S-IC stage and the S-II stage were completely smooth, the S-IVB growled, rattled, and rolled during the whole burn. But you could actually feel little vibrations."



      Conrad on Apollo 12 was more positive: "S-IVB ignition was smooth. The ride on the S-IVB was very nice."






      share|improve this answer











      $endgroup$















        9












        9








        9





        $begingroup$

        Earth departure burns can be relatively leisurely, so the acceleration tends not to be extremely high. There is some tradeoff between doing the burn over a short timeframe to maximize the Oberth effect, versus using a smaller, lighter engine and maximizing crew comfort.



        At the start of the Apollo TLI, acceleration would be about 0.6g, increasing as fuel mass is exhausted, and finishing up around 1.45g, according to this graph from the Apollo 11 flight evaluation report:



        enter image description here



        For a Mars mission, it would depend entirely on the design of the spacecraft doing it, but it probably would be comparable.



        There was some vibration noticed by the crew during the S-IVB burns. For subjective impressions, the best source is the crew debriefings done after each mission, though in this case they're surprisingly varied.



        In the debriefing for Apollo 11, Aldrin said it was a "rougher ride than the S-II" (second stage, which presumably 'averaged out' the roughness of each individual engine across the set of five, and had more structure between the engines and the crew cabin to damp vibrations through) and Armstrong said it was "a little rattly all the time". (These comments were in regard to the orbital insertion phase of the S-IVB but were probably applicable to the TLI as well.)



        The crew of Apollo 10 found it a little rougher, with Stafford saying "Where the S-IC stage and the S-II stage were completely smooth, the S-IVB growled, rattled, and rolled during the whole burn. But you could actually feel little vibrations."



        Conrad on Apollo 12 was more positive: "S-IVB ignition was smooth. The ride on the S-IVB was very nice."






        share|improve this answer











        $endgroup$



        Earth departure burns can be relatively leisurely, so the acceleration tends not to be extremely high. There is some tradeoff between doing the burn over a short timeframe to maximize the Oberth effect, versus using a smaller, lighter engine and maximizing crew comfort.



        At the start of the Apollo TLI, acceleration would be about 0.6g, increasing as fuel mass is exhausted, and finishing up around 1.45g, according to this graph from the Apollo 11 flight evaluation report:



        enter image description here



        For a Mars mission, it would depend entirely on the design of the spacecraft doing it, but it probably would be comparable.



        There was some vibration noticed by the crew during the S-IVB burns. For subjective impressions, the best source is the crew debriefings done after each mission, though in this case they're surprisingly varied.



        In the debriefing for Apollo 11, Aldrin said it was a "rougher ride than the S-II" (second stage, which presumably 'averaged out' the roughness of each individual engine across the set of five, and had more structure between the engines and the crew cabin to damp vibrations through) and Armstrong said it was "a little rattly all the time". (These comments were in regard to the orbital insertion phase of the S-IVB but were probably applicable to the TLI as well.)



        The crew of Apollo 10 found it a little rougher, with Stafford saying "Where the S-IC stage and the S-II stage were completely smooth, the S-IVB growled, rattled, and rolled during the whole burn. But you could actually feel little vibrations."



        Conrad on Apollo 12 was more positive: "S-IVB ignition was smooth. The ride on the S-IVB was very nice."







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Apr 2 at 22:29

























        answered Apr 2 at 19:42









        Russell BorogoveRussell Borogove

        89.7k3300385




        89.7k3300385





















            7












            $begingroup$

            enter image description here
            This image is from Quora because the picture I took from my Saturn V Haynes Manual was too big to upload. Anyway, you can see that the acceleration is by no means constant, but it peaks at just under 40 m/s^2, or around 4g. And it was a wild ride. In particular, when the first burn ended the entire structure, which had been compressed, snapped back. According to the Haynes Manual, astronaut Fred Haise said that when the first stage cut out he thought he was going through the instrument panel.





            What were the G forces experienced by the Apollo astronauts during the translunar injection burn?




            My Haynes doesn't seem to give specific figures, but the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph above leaves off and increase somewhat as the fuel was depleted. It would also jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.




            Space Shuttle, and I believe others like Soyuz, are designed to give a gentler ride, no more than 3g.



            For a trip to Mars there would be two stages--getting into orbit, and getting to Mars. Getting into orbit would be like anything, probably around 3g. Getting to Mars would be a lot gentler, but depending on the technology. Like the ~6 m/s^2 of the Saturn's S-IVB stage followed by a lot of coasting--getting off the ground is a big deal, but once you're up there engines would be designed for efficiency rather than thrust. Or something like an ion engine with a barely perceptible acceleration for months at a time. There's nothing close to being ready to go yet, so it's too soon to say.






            share|improve this answer











            $endgroup$








            • 3




              $begingroup$
              That graph cuts off before the part the question is asking about -- it shows every burn prior to the Trans-Lunar Injection burn.
              $endgroup$
              – Mark
              Apr 2 at 21:26






            • 1




              $begingroup$
              Dangit! I guess I didn't notice that. And my Haynes doesn't seem to give specific figures. But the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph left off and increased a bit as the fuel was depleted, then jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.
              $endgroup$
              – Greg
              Apr 2 at 21:37










            • $begingroup$
              @Greg I've added your comment back into your answer, does that look okay?
              $endgroup$
              – uhoh
              Apr 2 at 22:42










            • $begingroup$
              uhoh That looks fine, thanks.
              $endgroup$
              – Greg
              Apr 3 at 20:54















            7












            $begingroup$

            enter image description here
            This image is from Quora because the picture I took from my Saturn V Haynes Manual was too big to upload. Anyway, you can see that the acceleration is by no means constant, but it peaks at just under 40 m/s^2, or around 4g. And it was a wild ride. In particular, when the first burn ended the entire structure, which had been compressed, snapped back. According to the Haynes Manual, astronaut Fred Haise said that when the first stage cut out he thought he was going through the instrument panel.





            What were the G forces experienced by the Apollo astronauts during the translunar injection burn?




            My Haynes doesn't seem to give specific figures, but the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph above leaves off and increase somewhat as the fuel was depleted. It would also jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.




            Space Shuttle, and I believe others like Soyuz, are designed to give a gentler ride, no more than 3g.



            For a trip to Mars there would be two stages--getting into orbit, and getting to Mars. Getting into orbit would be like anything, probably around 3g. Getting to Mars would be a lot gentler, but depending on the technology. Like the ~6 m/s^2 of the Saturn's S-IVB stage followed by a lot of coasting--getting off the ground is a big deal, but once you're up there engines would be designed for efficiency rather than thrust. Or something like an ion engine with a barely perceptible acceleration for months at a time. There's nothing close to being ready to go yet, so it's too soon to say.






            share|improve this answer











            $endgroup$








            • 3




              $begingroup$
              That graph cuts off before the part the question is asking about -- it shows every burn prior to the Trans-Lunar Injection burn.
              $endgroup$
              – Mark
              Apr 2 at 21:26






            • 1




              $begingroup$
              Dangit! I guess I didn't notice that. And my Haynes doesn't seem to give specific figures. But the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph left off and increased a bit as the fuel was depleted, then jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.
              $endgroup$
              – Greg
              Apr 2 at 21:37










            • $begingroup$
              @Greg I've added your comment back into your answer, does that look okay?
              $endgroup$
              – uhoh
              Apr 2 at 22:42










            • $begingroup$
              uhoh That looks fine, thanks.
              $endgroup$
              – Greg
              Apr 3 at 20:54













            7












            7








            7





            $begingroup$

            enter image description here
            This image is from Quora because the picture I took from my Saturn V Haynes Manual was too big to upload. Anyway, you can see that the acceleration is by no means constant, but it peaks at just under 40 m/s^2, or around 4g. And it was a wild ride. In particular, when the first burn ended the entire structure, which had been compressed, snapped back. According to the Haynes Manual, astronaut Fred Haise said that when the first stage cut out he thought he was going through the instrument panel.





            What were the G forces experienced by the Apollo astronauts during the translunar injection burn?




            My Haynes doesn't seem to give specific figures, but the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph above leaves off and increase somewhat as the fuel was depleted. It would also jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.




            Space Shuttle, and I believe others like Soyuz, are designed to give a gentler ride, no more than 3g.



            For a trip to Mars there would be two stages--getting into orbit, and getting to Mars. Getting into orbit would be like anything, probably around 3g. Getting to Mars would be a lot gentler, but depending on the technology. Like the ~6 m/s^2 of the Saturn's S-IVB stage followed by a lot of coasting--getting off the ground is a big deal, but once you're up there engines would be designed for efficiency rather than thrust. Or something like an ion engine with a barely perceptible acceleration for months at a time. There's nothing close to being ready to go yet, so it's too soon to say.






            share|improve this answer











            $endgroup$



            enter image description here
            This image is from Quora because the picture I took from my Saturn V Haynes Manual was too big to upload. Anyway, you can see that the acceleration is by no means constant, but it peaks at just under 40 m/s^2, or around 4g. And it was a wild ride. In particular, when the first burn ended the entire structure, which had been compressed, snapped back. According to the Haynes Manual, astronaut Fred Haise said that when the first stage cut out he thought he was going through the instrument panel.





            What were the G forces experienced by the Apollo astronauts during the translunar injection burn?




            My Haynes doesn't seem to give specific figures, but the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph above leaves off and increase somewhat as the fuel was depleted. It would also jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.




            Space Shuttle, and I believe others like Soyuz, are designed to give a gentler ride, no more than 3g.



            For a trip to Mars there would be two stages--getting into orbit, and getting to Mars. Getting into orbit would be like anything, probably around 3g. Getting to Mars would be a lot gentler, but depending on the technology. Like the ~6 m/s^2 of the Saturn's S-IVB stage followed by a lot of coasting--getting off the ground is a big deal, but once you're up there engines would be designed for efficiency rather than thrust. Or something like an ion engine with a barely perceptible acceleration for months at a time. There's nothing close to being ready to go yet, so it's too soon to say.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Apr 2 at 22:42









            uhoh

            41.1k19156519




            41.1k19156519










            answered Apr 2 at 20:49









            GregGreg

            1,04739




            1,04739







            • 3




              $begingroup$
              That graph cuts off before the part the question is asking about -- it shows every burn prior to the Trans-Lunar Injection burn.
              $endgroup$
              – Mark
              Apr 2 at 21:26






            • 1




              $begingroup$
              Dangit! I guess I didn't notice that. And my Haynes doesn't seem to give specific figures. But the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph left off and increased a bit as the fuel was depleted, then jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.
              $endgroup$
              – Greg
              Apr 2 at 21:37










            • $begingroup$
              @Greg I've added your comment back into your answer, does that look okay?
              $endgroup$
              – uhoh
              Apr 2 at 22:42










            • $begingroup$
              uhoh That looks fine, thanks.
              $endgroup$
              – Greg
              Apr 3 at 20:54












            • 3




              $begingroup$
              That graph cuts off before the part the question is asking about -- it shows every burn prior to the Trans-Lunar Injection burn.
              $endgroup$
              – Mark
              Apr 2 at 21:26






            • 1




              $begingroup$
              Dangit! I guess I didn't notice that. And my Haynes doesn't seem to give specific figures. But the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph left off and increased a bit as the fuel was depleted, then jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.
              $endgroup$
              – Greg
              Apr 2 at 21:37










            • $begingroup$
              @Greg I've added your comment back into your answer, does that look okay?
              $endgroup$
              – uhoh
              Apr 2 at 22:42










            • $begingroup$
              uhoh That looks fine, thanks.
              $endgroup$
              – Greg
              Apr 3 at 20:54







            3




            3




            $begingroup$
            That graph cuts off before the part the question is asking about -- it shows every burn prior to the Trans-Lunar Injection burn.
            $endgroup$
            – Mark
            Apr 2 at 21:26




            $begingroup$
            That graph cuts off before the part the question is asking about -- it shows every burn prior to the Trans-Lunar Injection burn.
            $endgroup$
            – Mark
            Apr 2 at 21:26




            1




            1




            $begingroup$
            Dangit! I guess I didn't notice that. And my Haynes doesn't seem to give specific figures. But the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph left off and increased a bit as the fuel was depleted, then jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.
            $endgroup$
            – Greg
            Apr 2 at 21:37




            $begingroup$
            Dangit! I guess I didn't notice that. And my Haynes doesn't seem to give specific figures. But the S-IVB had a single engine, and they didn't try to throttle it. So the acceleration would have picked up where the graph left off and increased a bit as the fuel was depleted, then jump 13% when the LOX/LH2 ratio switched from 4.5:1 to 5.0:1.
            $endgroup$
            – Greg
            Apr 2 at 21:37












            $begingroup$
            @Greg I've added your comment back into your answer, does that look okay?
            $endgroup$
            – uhoh
            Apr 2 at 22:42




            $begingroup$
            @Greg I've added your comment back into your answer, does that look okay?
            $endgroup$
            – uhoh
            Apr 2 at 22:42












            $begingroup$
            uhoh That looks fine, thanks.
            $endgroup$
            – Greg
            Apr 3 at 20:54




            $begingroup$
            uhoh That looks fine, thanks.
            $endgroup$
            – Greg
            Apr 3 at 20:54

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Space Exploration Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35244%2fwhat-are-the-g-forces-leaving-earth-orbit%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?