How can I plot a Farey diagram?How to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram

Is lying to get "gardening leave" fraud?

Why is Thanos so tough at the beginning of "Avengers: Endgame"?

If an enemy is just below a 10-foot-high ceiling, are they in melee range of a creature on the ground?

Python password manager

What happens if I start too many background jobs?

Meaning of "individuandum"

Feels like I am getting dragged into office politics

Any examples of headwear for races with animal ears?

Is Cola "probably the best-known" Latin word in the world? If not, which might it be?

Can fracking help reduce CO2?

How to reply this mail from potential PhD professor?

What are the spoon bit of a spoon and fork bit of a fork called?

Why are notes ordered like they are on a piano?

How to scale a verbatim environment on a minipage?

CRT Oscilloscope - part of the plot is missing

Is it the same airport YUL and YMQ in Canada?

Unidentified items in bicycle tube repair kit

Junior developer struggles: how to communicate with management?

Why is the SNP putting so much emphasis on currency plans?

How can I close a gap between my fence and my neighbor's that's on his side of the property line?

Can I use 1000v rectifier diodes instead of 600v rectifier diodes?

What are the differences between credential stuffing and password spraying?

Is NMDA produced in the body?

Binary Numbers Magic Trick



How can I plot a Farey diagram?


How to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram













6












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – G. R.
    Apr 8 at 21:16






  • 2




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    Apr 8 at 21:40






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    Apr 8 at 23:17






  • 1




    $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    Apr 9 at 17:44











  • $begingroup$
    If it wasn't for the very good answers you got, I would have voted to close this question as it gives no details, no definitions no code and shows no personal effort. Please, next time try asking good questions.
    $endgroup$
    – rhermans
    Apr 11 at 9:18
















6












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question











$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – G. R.
    Apr 8 at 21:16






  • 2




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    Apr 8 at 21:40






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    Apr 8 at 23:17






  • 1




    $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    Apr 9 at 17:44











  • $begingroup$
    If it wasn't for the very good answers you got, I would have voted to close this question as it gives no details, no definitions no code and shows no personal effort. Please, next time try asking good questions.
    $endgroup$
    – rhermans
    Apr 11 at 9:18














6












6








6


2



$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question











$endgroup$




How can I plot the following diagram for a Farey series?



enter image description here







graphics number-theory






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 9 at 3:01









Michael E2

151k12203484




151k12203484










asked Apr 8 at 21:12









G. R.G. R.

343




343











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – G. R.
    Apr 8 at 21:16






  • 2




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    Apr 8 at 21:40






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    Apr 8 at 23:17






  • 1




    $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    Apr 9 at 17:44











  • $begingroup$
    If it wasn't for the very good answers you got, I would have voted to close this question as it gives no details, no definitions no code and shows no personal effort. Please, next time try asking good questions.
    $endgroup$
    – rhermans
    Apr 11 at 9:18

















  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – G. R.
    Apr 8 at 21:16






  • 2




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    Apr 8 at 21:40






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    Apr 8 at 23:17






  • 1




    $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    Apr 9 at 17:44











  • $begingroup$
    If it wasn't for the very good answers you got, I would have voted to close this question as it gives no details, no definitions no code and shows no personal effort. Please, next time try asking good questions.
    $endgroup$
    – rhermans
    Apr 11 at 9:18
















$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– G. R.
Apr 8 at 21:16




$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– G. R.
Apr 8 at 21:16




2




2




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
Apr 8 at 21:40




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
Apr 8 at 21:40




1




1




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
Apr 8 at 23:17




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
Apr 8 at 23:17




1




1




$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
Apr 9 at 17:44





$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
Apr 9 at 17:44













$begingroup$
If it wasn't for the very good answers you got, I would have voted to close this question as it gives no details, no definitions no code and shows no personal effort. Please, next time try asking good questions.
$endgroup$
– rhermans
Apr 11 at 9:18





$begingroup$
If it wasn't for the very good answers you got, I would have voted to close this question as it gives no details, no definitions no code and shows no personal effort. Please, next time try asking good questions.
$endgroup$
– rhermans
Apr 11 at 9:18











4 Answers
4






active

oldest

votes


















12












$begingroup$

The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
x[1/n, 1, t], y[1/n, 1, t],
t, 0, 2 Pi,
PlotStyle -> Thickness[0.002], Black
]

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]


Mathematica graphics



I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



mediant[a_, b_, c_, d_] := a + c, b + d
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2],
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
]

computeLabels[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]

labels = Reverse@Join[
"1/0",
computeLabels[1, 0, 1, 1],
"1/1",
computeLabels[1, 1, 0, 1],
"0/1",
computeLabelsNegative[1, 0, 1, 1],
"-1,1",
computeLabelsNegative[1, 1, 0, 1]
];

coords = CirclePoints[1.1, 186 Degree, 64];

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, labels, coords],
ImageSize -> 500
]


Mathematica graphics






share|improve this answer











$endgroup$




















    5












    $begingroup$

    Using Graph with a bit of coding:



    addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
    With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
    With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
    With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
    With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

    fLabel[fr_, angle_] :=
    With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

    fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
    fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

    FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
    Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
    cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
    nopts = FilterRules[Flatten[opts], Options[Graph]];
    top = fr[0,1], fr[1,1], fr[1,0];
    bottom = fr[1,0], fr[-1][1,1], fr[0,1];
    stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
    i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
    i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
    vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
    edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
    coords = CirclePoints[1,0,Length[vert]];
    labpos = Range[1, Length[vert], 2 ^ (d - 1)];
    labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
    edgestyle = Black;
    dstyle = Black;
    If[cfunc =!= Automatic,
    edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
    edgestyle = edgestyle / Max[edgestyle];
    edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
    dstyle = cfunc[1]
    ];
    Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
    EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
    PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
    ]


    Example:



    FareyDiagram[4]


    enter image description here



    FareyDiagram[6, 4, ColorFunction -> Hue, 
    VertexLabelStyle -> Darker[Red]]


    enter image description here






    share|improve this answer











    $endgroup$




















      4












      $begingroup$

      I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



      On that basis, you can generate the sequence as follows, for instance:



      ClearAll[farey]
      farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


      So for instance:



      farey[5]



      0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




      I am not sure how these sequences are connected with the figure you showed though.






      share|improve this answer









      $endgroup$












      • $begingroup$
        Thanks to C.E., it is a concrete answer
        $endgroup$
        – G. R.
        Apr 9 at 12:58


















      0












      $begingroup$

      grupo[n_] := Show[Graphics[Thin, Red, 
      Circle[0, 0, 1, 0, Pi/2]], Graphics[Thin,
      Map[BSplineCurve[#1[[1]], 0, 0, #1[[2]],
      SplineWeights -> 2, EuclideanDistance @@
      #,2]&,
      Partition[ReIm[Exp[Pi/2 I #]] & /@
      FareySequence[n], 2, 1]]], Map[Graphics[Blue,
      Point[ReIm[Exp[Pi/2 I #]]]] &,
      FareySequence[n]], PlotRange -> All]

      Show[Table[grupo[n], n, 2, 7]]


      enter image description here






      share|improve this answer









      $endgroup$












      • $begingroup$
        the true farey diagram based on the answers given above
        $endgroup$
        – G. R.
        Apr 16 at 23:52











      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "387"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      12












      $begingroup$

      The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



      x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
      y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
      hypocycloid[n_] := ParametricPlot[
      x[1/n, 1, t], y[1/n, 1, t],
      t, 0, 2 Pi,
      PlotStyle -> Thickness[0.002], Black
      ]

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      ImageSize -> 500
      ]


      Mathematica graphics



      I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



      How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



      mediant[a_, b_, c_, d_] := a + c, b + d
      recursive[v1_, v2_, depth_] := If[
      depth > 2,
      mediant[v1, v2],
      recursive[v1, mediant[v1, v2], depth + 1],
      mediant[v1, v2],
      recursive[mediant[v1, v2], v2, depth + 1]
      ]

      computeLabels[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["``/``"] @@@ numbers
      ]
      computeLabelsNegative[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["-`2`/`1`"] @@@ numbers
      ]

      labels = Reverse@Join[
      "1/0",
      computeLabels[1, 0, 1, 1],
      "1/1",
      computeLabels[1, 1, 0, 1],
      "0/1",
      computeLabelsNegative[1, 0, 1, 1],
      "-1,1",
      computeLabelsNegative[1, 1, 0, 1]
      ];

      coords = CirclePoints[1.1, 186 Degree, 64];

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      Graphics@MapThread[Text, labels, coords],
      ImageSize -> 500
      ]


      Mathematica graphics






      share|improve this answer











      $endgroup$

















        12












        $begingroup$

        The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



        x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
        y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
        hypocycloid[n_] := ParametricPlot[
        x[1/n, 1, t], y[1/n, 1, t],
        t, 0, 2 Pi,
        PlotStyle -> Thickness[0.002], Black
        ]

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        ImageSize -> 500
        ]


        Mathematica graphics



        I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



        How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



        mediant[a_, b_, c_, d_] := a + c, b + d
        recursive[v1_, v2_, depth_] := If[
        depth > 2,
        mediant[v1, v2],
        recursive[v1, mediant[v1, v2], depth + 1],
        mediant[v1, v2],
        recursive[mediant[v1, v2], v2, depth + 1]
        ]

        computeLabels[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["``/``"] @@@ numbers
        ]
        computeLabelsNegative[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["-`2`/`1`"] @@@ numbers
        ]

        labels = Reverse@Join[
        "1/0",
        computeLabels[1, 0, 1, 1],
        "1/1",
        computeLabels[1, 1, 0, 1],
        "0/1",
        computeLabelsNegative[1, 0, 1, 1],
        "-1,1",
        computeLabelsNegative[1, 1, 0, 1]
        ];

        coords = CirclePoints[1.1, 186 Degree, 64];

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        Graphics@MapThread[Text, labels, coords],
        ImageSize -> 500
        ]


        Mathematica graphics






        share|improve this answer











        $endgroup$















          12












          12








          12





          $begingroup$

          The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics






          share|improve this answer











          $endgroup$



          The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Apr 9 at 6:50

























          answered Apr 9 at 3:27









          C. E.C. E.

          51.5k3101207




          51.5k3101207





















              5












              $begingroup$

              Using Graph with a bit of coding:



              addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
              With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
              With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
              With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
              With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

              fLabel[fr_, angle_] :=
              With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

              fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
              fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

              FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
              Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
              cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
              nopts = FilterRules[Flatten[opts], Options[Graph]];
              top = fr[0,1], fr[1,1], fr[1,0];
              bottom = fr[1,0], fr[-1][1,1], fr[0,1];
              stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
              i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
              i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
              vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
              edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
              coords = CirclePoints[1,0,Length[vert]];
              labpos = Range[1, Length[vert], 2 ^ (d - 1)];
              labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
              edgestyle = Black;
              dstyle = Black;
              If[cfunc =!= Automatic,
              edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
              edgestyle = edgestyle / Max[edgestyle];
              edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
              dstyle = cfunc[1]
              ];
              Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
              EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
              PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
              ]


              Example:



              FareyDiagram[4]


              enter image description here



              FareyDiagram[6, 4, ColorFunction -> Hue, 
              VertexLabelStyle -> Darker[Red]]


              enter image description here






              share|improve this answer











              $endgroup$

















                5












                $begingroup$

                Using Graph with a bit of coding:



                addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
                With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
                With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
                With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
                With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                fLabel[fr_, angle_] :=
                With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

                fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
                cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
                nopts = FilterRules[Flatten[opts], Options[Graph]];
                top = fr[0,1], fr[1,1], fr[1,0];
                bottom = fr[1,0], fr[-1][1,1], fr[0,1];
                stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
                i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
                coords = CirclePoints[1,0,Length[vert]];
                labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
                edgestyle = Black;
                dstyle = Black;
                If[cfunc =!= Automatic,
                edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
                edgestyle = edgestyle / Max[edgestyle];
                edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                dstyle = cfunc[1]
                ];
                Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
                EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
                PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                ]


                Example:



                FareyDiagram[4]


                enter image description here



                FareyDiagram[6, 4, ColorFunction -> Hue, 
                VertexLabelStyle -> Darker[Red]]


                enter image description here






                share|improve this answer











                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  Using Graph with a bit of coding:



                  addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  fLabel[fr_, angle_] :=
                  With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

                  fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                  fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                  FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                  Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
                  cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
                  nopts = FilterRules[Flatten[opts], Options[Graph]];
                  top = fr[0,1], fr[1,1], fr[1,0];
                  bottom = fr[1,0], fr[-1][1,1], fr[0,1];
                  stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
                  i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                  i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                  vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                  edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
                  coords = CirclePoints[1,0,Length[vert]];
                  labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                  labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
                  edgestyle = Black;
                  dstyle = Black;
                  If[cfunc =!= Automatic,
                  edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
                  edgestyle = edgestyle / Max[edgestyle];
                  edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                  dstyle = cfunc[1]
                  ];
                  Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
                  EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
                  PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                  ]


                  Example:



                  FareyDiagram[4]


                  enter image description here



                  FareyDiagram[6, 4, ColorFunction -> Hue, 
                  VertexLabelStyle -> Darker[Red]]


                  enter image description here






                  share|improve this answer











                  $endgroup$



                  Using Graph with a bit of coding:



                  addPoint[p : h_[a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  addPoint[p : h_[-1][a_,b_], q : h_[-1][c_,d_], i_] :=
                  With[np = h[-1][a + c, b + d], Sow[p [UndirectedEdge] np, np [UndirectedEdge] q]; Sow[i, i, "Depth"]; p, np, q]

                  fLabel[fr_, angle_] :=
                  With[tangle=ArcTan@@angle, Placed[fLabel[fr], AngleVector[1/2, 1/2, .7, #] & /@tangle, tangle+Pi]]

                  fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                  fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                  FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                  Block[fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts,
                  cfunc = ColorFunction /. Flatten[opts] /. ColorFunction -> Automatic;
                  nopts = FilterRules[Flatten[opts], Options[Graph]];
                  top = fr[0,1], fr[1,1], fr[1,0];
                  bottom = fr[1,0], fr[-1][1,1], fr[0,1];
                  stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], fr[0, 1],fr[1, 0]];
                  i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                  i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                  vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                  edges = Flatten[stedges, toppart[[2, 1]], bottompart[[2, 1]]];
                  coords = CirclePoints[1,0,Length[vert]];
                  labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                  labels = Thread[vert[[labpos]]->fLabel@@@Transpose[vert,coords][[labpos]]];
                  edgestyle = Black;
                  dstyle = Black;
                  If[cfunc =!= Automatic,
                  edgestyle = Flatten[Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]];
                  edgestyle = edgestyle / Max[edgestyle];
                  edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                  dstyle = cfunc[1]
                  ];
                  Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[1,0,Length[vert]], VertexLabels->labels,
                  EdgeShapeFunction->(BSplineCurve[#1[[1]],0,0,#1[[2]], SplineWeights->2,EuclideanDistance@@#,2]&),
                  PerformanceGoal->"Speed", Epilog->dstyle, Circle[], VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                  ]


                  Example:



                  FareyDiagram[4]


                  enter image description here



                  FareyDiagram[6, 4, ColorFunction -> Hue, 
                  VertexLabelStyle -> Darker[Red]]


                  enter image description here







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Apr 9 at 16:08

























                  answered Apr 9 at 15:53









                  halmirhalmir

                  10.8k2544




                  10.8k2544





















                      4












                      $begingroup$

                      I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                      On that basis, you can generate the sequence as follows, for instance:



                      ClearAll[farey]
                      farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                      So for instance:



                      farey[5]



                      0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                      I am not sure how these sequences are connected with the figure you showed though.






                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        Thanks to C.E., it is a concrete answer
                        $endgroup$
                        – G. R.
                        Apr 9 at 12:58















                      4












                      $begingroup$

                      I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                      On that basis, you can generate the sequence as follows, for instance:



                      ClearAll[farey]
                      farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                      So for instance:



                      farey[5]



                      0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                      I am not sure how these sequences are connected with the figure you showed though.






                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        Thanks to C.E., it is a concrete answer
                        $endgroup$
                        – G. R.
                        Apr 9 at 12:58













                      4












                      4








                      4





                      $begingroup$

                      I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                      On that basis, you can generate the sequence as follows, for instance:



                      ClearAll[farey]
                      farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                      So for instance:



                      farey[5]



                      0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                      I am not sure how these sequences are connected with the figure you showed though.






                      share|improve this answer









                      $endgroup$



                      I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                      On that basis, you can generate the sequence as follows, for instance:



                      ClearAll[farey]
                      farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                      So for instance:



                      farey[5]



                      0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                      I am not sure how these sequences are connected with the figure you showed though.







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered Apr 8 at 21:59









                      MarcoBMarcoB

                      38.8k558117




                      38.8k558117











                      • $begingroup$
                        Thanks to C.E., it is a concrete answer
                        $endgroup$
                        – G. R.
                        Apr 9 at 12:58
















                      • $begingroup$
                        Thanks to C.E., it is a concrete answer
                        $endgroup$
                        – G. R.
                        Apr 9 at 12:58















                      $begingroup$
                      Thanks to C.E., it is a concrete answer
                      $endgroup$
                      – G. R.
                      Apr 9 at 12:58




                      $begingroup$
                      Thanks to C.E., it is a concrete answer
                      $endgroup$
                      – G. R.
                      Apr 9 at 12:58











                      0












                      $begingroup$

                      grupo[n_] := Show[Graphics[Thin, Red, 
                      Circle[0, 0, 1, 0, Pi/2]], Graphics[Thin,
                      Map[BSplineCurve[#1[[1]], 0, 0, #1[[2]],
                      SplineWeights -> 2, EuclideanDistance @@
                      #,2]&,
                      Partition[ReIm[Exp[Pi/2 I #]] & /@
                      FareySequence[n], 2, 1]]], Map[Graphics[Blue,
                      Point[ReIm[Exp[Pi/2 I #]]]] &,
                      FareySequence[n]], PlotRange -> All]

                      Show[Table[grupo[n], n, 2, 7]]


                      enter image description here






                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        the true farey diagram based on the answers given above
                        $endgroup$
                        – G. R.
                        Apr 16 at 23:52















                      0












                      $begingroup$

                      grupo[n_] := Show[Graphics[Thin, Red, 
                      Circle[0, 0, 1, 0, Pi/2]], Graphics[Thin,
                      Map[BSplineCurve[#1[[1]], 0, 0, #1[[2]],
                      SplineWeights -> 2, EuclideanDistance @@
                      #,2]&,
                      Partition[ReIm[Exp[Pi/2 I #]] & /@
                      FareySequence[n], 2, 1]]], Map[Graphics[Blue,
                      Point[ReIm[Exp[Pi/2 I #]]]] &,
                      FareySequence[n]], PlotRange -> All]

                      Show[Table[grupo[n], n, 2, 7]]


                      enter image description here






                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        the true farey diagram based on the answers given above
                        $endgroup$
                        – G. R.
                        Apr 16 at 23:52













                      0












                      0








                      0





                      $begingroup$

                      grupo[n_] := Show[Graphics[Thin, Red, 
                      Circle[0, 0, 1, 0, Pi/2]], Graphics[Thin,
                      Map[BSplineCurve[#1[[1]], 0, 0, #1[[2]],
                      SplineWeights -> 2, EuclideanDistance @@
                      #,2]&,
                      Partition[ReIm[Exp[Pi/2 I #]] & /@
                      FareySequence[n], 2, 1]]], Map[Graphics[Blue,
                      Point[ReIm[Exp[Pi/2 I #]]]] &,
                      FareySequence[n]], PlotRange -> All]

                      Show[Table[grupo[n], n, 2, 7]]


                      enter image description here






                      share|improve this answer









                      $endgroup$



                      grupo[n_] := Show[Graphics[Thin, Red, 
                      Circle[0, 0, 1, 0, Pi/2]], Graphics[Thin,
                      Map[BSplineCurve[#1[[1]], 0, 0, #1[[2]],
                      SplineWeights -> 2, EuclideanDistance @@
                      #,2]&,
                      Partition[ReIm[Exp[Pi/2 I #]] & /@
                      FareySequence[n], 2, 1]]], Map[Graphics[Blue,
                      Point[ReIm[Exp[Pi/2 I #]]]] &,
                      FareySequence[n]], PlotRange -> All]

                      Show[Table[grupo[n], n, 2, 7]]


                      enter image description here







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered Apr 16 at 23:48









                      G. R.G. R.

                      343




                      343











                      • $begingroup$
                        the true farey diagram based on the answers given above
                        $endgroup$
                        – G. R.
                        Apr 16 at 23:52
















                      • $begingroup$
                        the true farey diagram based on the answers given above
                        $endgroup$
                        – G. R.
                        Apr 16 at 23:52















                      $begingroup$
                      the true farey diagram based on the answers given above
                      $endgroup$
                      – G. R.
                      Apr 16 at 23:52




                      $begingroup$
                      the true farey diagram based on the answers given above
                      $endgroup$
                      – G. R.
                      Apr 16 at 23:52

















                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                      Luettelo Yhdysvaltain laivaston lentotukialuksista Lähteet | Navigointivalikko

                      Gary (muusikko) Sisällysluettelo Historia | Rockin' High | Lähteet | Aiheesta muualla | NavigointivalikkoInfobox OKTuomas "Gary" Keskinen Ancaran kitaristiksiProjekti Rockin' High