Yolo-v3 tiny *.weights file contains less weights then expected2019 Community Moderator ElectionVisualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]How to extract all the information from a midi file (monophonic and polyphonic) and then vectorize them to feed into a Neural Network?YOLO v3 complete architecture

How is it possible to have an ability score that is less than 3?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

Linear Path Optimization with Two Dependent Variables

NMaximize is not converging to a solution

Codimension of non-flat locus

How to format long polynomial?

Is it possible to do 50 km distance without any previous training?

Why does Kotter return in Welcome Back Kotter?

What typically incentivizes a professor to change jobs to a lower ranking university?

Modeling an IP Address

Has there ever been an airliner design involving reducing generator load by installing solar panels?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Maximum likelihood parameters deviate from posterior distributions

Two films in a tank, only one comes out with a development error – why?

Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?

Can a vampire attack twice with their claws using multiattack?

Decision tree nodes overlapping with Tikz

RSA: Danger of using p to create q

Filter any system log file by date or date range

Can I ask the recruiters in my resume to put the reason why I am rejected?

How do I deal with an unproductive colleague in a small company?

"You are your self first supporter", a more proper way to say it

Is it legal for company to use my work email to pretend I still work there?

What does it mean to describe someone as a butt steak?



Yolo-v3 tiny *.weights file contains less weights then expected



2019 Community Moderator ElectionVisualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]How to extract all the information from a midi file (monophonic and polyphonic) and then vectorize them to feed into a Neural Network?YOLO v3 complete architecture










0












$begingroup$


I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



Anyway the summary of my yolov3-tiny network is the following:



>>> model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input (InputLayer) [(None, 416, 416, 3) 0
__________________________________________________________________________________________________
conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
__________________________________________________________________________________________________
norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
__________________________________________________________________________________________________
conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
__________________________________________________________________________________________________
norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
__________________________________________________________________________________________________
conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
__________________________________________________________________________________________________
conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
__________________________________________________________________________________________________
conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
__________________________________________________________________________________________________
conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
__________________________________________________________________________________________________
conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
__________________________________________________________________________________________________
conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
__________________________________________________________________________________________________
norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
__________________________________________________________________________________________________
conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
__________________________________________________________________________________________________
norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
norm_5[0][0]
__________________________________________________________________________________________________
conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
__________________________________________________________________________________________________
conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
__________________________________________________________________________________________________
norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
__________________________________________________________________________________________________
norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
__________________________________________________________________________________________________
conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
__________________________________________________________________________________________________
conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
__________________________________________________________________________________________________
lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
lambda_2[0][0]
==================================================================================================
Total params: 8,861,918
Trainable params: 8,855,550
Non-trainable params: 6,368
__________________________________________________________________________________________________


and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



Thank you.










share|improve this question









$endgroup$
















    0












    $begingroup$


    I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



    Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



    Anyway the summary of my yolov3-tiny network is the following:



    >>> model.summary()
    Model: "model"
    __________________________________________________________________________________________________
    Layer (type) Output Shape Param # Connected to
    ==================================================================================================
    Input (InputLayer) [(None, 416, 416, 3) 0
    __________________________________________________________________________________________________
    conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
    __________________________________________________________________________________________________
    norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
    __________________________________________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
    __________________________________________________________________________________________________
    conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
    __________________________________________________________________________________________________
    norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
    __________________________________________________________________________________________________
    conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
    __________________________________________________________________________________________________
    norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
    __________________________________________________________________________________________________
    conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
    __________________________________________________________________________________________________
    norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
    __________________________________________________________________________________________________
    conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
    __________________________________________________________________________________________________
    norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
    __________________________________________________________________________________________________
    conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
    __________________________________________________________________________________________________
    norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
    __________________________________________________________________________________________________
    max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
    __________________________________________________________________________________________________
    conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
    __________________________________________________________________________________________________
    norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
    __________________________________________________________________________________________________
    conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
    __________________________________________________________________________________________________
    norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
    __________________________________________________________________________________________________
    conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
    __________________________________________________________________________________________________
    norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
    __________________________________________________________________________________________________
    lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
    __________________________________________________________________________________________________
    concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
    norm_5[0][0]
    __________________________________________________________________________________________________
    conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
    __________________________________________________________________________________________________
    conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
    __________________________________________________________________________________________________
    norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
    __________________________________________________________________________________________________
    norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
    __________________________________________________________________________________________________
    conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
    __________________________________________________________________________________________________
    conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
    __________________________________________________________________________________________________
    lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
    __________________________________________________________________________________________________
    lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
    __________________________________________________________________________________________________
    concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
    lambda_2[0][0]
    ==================================================================================================
    Total params: 8,861,918
    Trainable params: 8,855,550
    Non-trainable params: 6,368
    __________________________________________________________________________________________________


    and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



    Thank you.










    share|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



      Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



      Anyway the summary of my yolov3-tiny network is the following:



      >>> model.summary()
      Model: "model"
      __________________________________________________________________________________________________
      Layer (type) Output Shape Param # Connected to
      ==================================================================================================
      Input (InputLayer) [(None, 416, 416, 3) 0
      __________________________________________________________________________________________________
      conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
      __________________________________________________________________________________________________
      norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
      __________________________________________________________________________________________________
      max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
      __________________________________________________________________________________________________
      conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
      __________________________________________________________________________________________________
      norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
      __________________________________________________________________________________________________
      conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
      __________________________________________________________________________________________________
      norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
      __________________________________________________________________________________________________
      conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
      __________________________________________________________________________________________________
      norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
      __________________________________________________________________________________________________
      conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
      __________________________________________________________________________________________________
      norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
      __________________________________________________________________________________________________
      conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
      __________________________________________________________________________________________________
      norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
      __________________________________________________________________________________________________
      conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
      __________________________________________________________________________________________________
      norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
      __________________________________________________________________________________________________
      conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
      __________________________________________________________________________________________________
      norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
      __________________________________________________________________________________________________
      conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
      __________________________________________________________________________________________________
      norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
      __________________________________________________________________________________________________
      lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
      __________________________________________________________________________________________________
      concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
      norm_5[0][0]
      __________________________________________________________________________________________________
      conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
      __________________________________________________________________________________________________
      conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
      __________________________________________________________________________________________________
      norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
      __________________________________________________________________________________________________
      norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
      __________________________________________________________________________________________________
      conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
      __________________________________________________________________________________________________
      conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
      __________________________________________________________________________________________________
      lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
      __________________________________________________________________________________________________
      lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
      __________________________________________________________________________________________________
      concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
      lambda_2[0][0]
      ==================================================================================================
      Total params: 8,861,918
      Trainable params: 8,855,550
      Non-trainable params: 6,368
      __________________________________________________________________________________________________


      and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



      Thank you.










      share|improve this question









      $endgroup$




      I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.



      Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.



      Anyway the summary of my yolov3-tiny network is the following:



      >>> model.summary()
      Model: "model"
      __________________________________________________________________________________________________
      Layer (type) Output Shape Param # Connected to
      ==================================================================================================
      Input (InputLayer) [(None, 416, 416, 3) 0
      __________________________________________________________________________________________________
      conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
      __________________________________________________________________________________________________
      norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
      __________________________________________________________________________________________________
      max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
      __________________________________________________________________________________________________
      conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
      __________________________________________________________________________________________________
      norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
      __________________________________________________________________________________________________
      conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
      __________________________________________________________________________________________________
      norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
      __________________________________________________________________________________________________
      conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
      __________________________________________________________________________________________________
      norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
      __________________________________________________________________________________________________
      conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
      __________________________________________________________________________________________________
      norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
      __________________________________________________________________________________________________
      conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
      __________________________________________________________________________________________________
      norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
      __________________________________________________________________________________________________
      max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
      __________________________________________________________________________________________________
      conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
      __________________________________________________________________________________________________
      norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
      __________________________________________________________________________________________________
      conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
      __________________________________________________________________________________________________
      norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
      __________________________________________________________________________________________________
      conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
      __________________________________________________________________________________________________
      norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
      __________________________________________________________________________________________________
      lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
      __________________________________________________________________________________________________
      concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
      norm_5[0][0]
      __________________________________________________________________________________________________
      conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
      __________________________________________________________________________________________________
      conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
      __________________________________________________________________________________________________
      norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
      __________________________________________________________________________________________________
      norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
      __________________________________________________________________________________________________
      conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
      __________________________________________________________________________________________________
      conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
      __________________________________________________________________________________________________
      lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
      __________________________________________________________________________________________________
      lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
      __________________________________________________________________________________________________
      concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
      lambda_2[0][0]
      ==================================================================================================
      Total params: 8,861,918
      Trainable params: 8,855,550
      Non-trainable params: 6,368
      __________________________________________________________________________________________________


      and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?



      Thank you.







      python convnet yolo






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 28 at 8:42









      aleio1aleio1

      11




      11




















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48131%2fyolo-v3-tiny-weights-file-contains-less-weights-then-expected%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48131%2fyolo-v3-tiny-weights-file-contains-less-weights-then-expected%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?