Yolo-v3 tiny *.weights file contains less weights then expected2019 Community Moderator ElectionVisualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]How to extract all the information from a midi file (monophonic and polyphonic) and then vectorize them to feed into a Neural Network?YOLO v3 complete architecture
How is it possible to have an ability score that is less than 3?
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
Linear Path Optimization with Two Dependent Variables
NMaximize is not converging to a solution
Codimension of non-flat locus
How to format long polynomial?
Is it possible to do 50 km distance without any previous training?
Why does Kotter return in Welcome Back Kotter?
What typically incentivizes a professor to change jobs to a lower ranking university?
Modeling an IP Address
Has there ever been an airliner design involving reducing generator load by installing solar panels?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
Maximum likelihood parameters deviate from posterior distributions
Two films in a tank, only one comes out with a development error – why?
Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?
Can a vampire attack twice with their claws using multiattack?
Decision tree nodes overlapping with Tikz
RSA: Danger of using p to create q
Filter any system log file by date or date range
Can I ask the recruiters in my resume to put the reason why I am rejected?
How do I deal with an unproductive colleague in a small company?
"You are your self first supporter", a more proper way to say it
Is it legal for company to use my work email to pretend I still work there?
What does it mean to describe someone as a butt steak?
Yolo-v3 tiny *.weights file contains less weights then expected
2019 Community Moderator ElectionVisualizing ConvNet filters using my own fine-tuned network resulting in a “NoneType” when running: K.gradients(loss, model.input)[0]How to extract all the information from a midi file (monophonic and polyphonic) and then vectorize them to feed into a Neural Network?YOLO v3 complete architecture
$begingroup$
I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.
Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.
Anyway the summary of my yolov3-tiny network is the following:
>>> model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input (InputLayer) [(None, 416, 416, 3) 0
__________________________________________________________________________________________________
conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
__________________________________________________________________________________________________
norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
__________________________________________________________________________________________________
conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
__________________________________________________________________________________________________
norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
__________________________________________________________________________________________________
conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
__________________________________________________________________________________________________
conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
__________________________________________________________________________________________________
conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
__________________________________________________________________________________________________
conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
__________________________________________________________________________________________________
conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
__________________________________________________________________________________________________
conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
__________________________________________________________________________________________________
norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
__________________________________________________________________________________________________
conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
__________________________________________________________________________________________________
norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
norm_5[0][0]
__________________________________________________________________________________________________
conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
__________________________________________________________________________________________________
conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
__________________________________________________________________________________________________
norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
__________________________________________________________________________________________________
norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
__________________________________________________________________________________________________
conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
__________________________________________________________________________________________________
conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
__________________________________________________________________________________________________
lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
lambda_2[0][0]
==================================================================================================
Total params: 8,861,918
Trainable params: 8,855,550
Non-trainable params: 6,368
__________________________________________________________________________________________________
and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?
Thank you.
python convnet yolo
$endgroup$
add a comment |
$begingroup$
I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.
Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.
Anyway the summary of my yolov3-tiny network is the following:
>>> model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input (InputLayer) [(None, 416, 416, 3) 0
__________________________________________________________________________________________________
conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
__________________________________________________________________________________________________
norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
__________________________________________________________________________________________________
conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
__________________________________________________________________________________________________
norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
__________________________________________________________________________________________________
conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
__________________________________________________________________________________________________
conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
__________________________________________________________________________________________________
conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
__________________________________________________________________________________________________
conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
__________________________________________________________________________________________________
conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
__________________________________________________________________________________________________
conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
__________________________________________________________________________________________________
norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
__________________________________________________________________________________________________
conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
__________________________________________________________________________________________________
norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
norm_5[0][0]
__________________________________________________________________________________________________
conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
__________________________________________________________________________________________________
conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
__________________________________________________________________________________________________
norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
__________________________________________________________________________________________________
norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
__________________________________________________________________________________________________
conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
__________________________________________________________________________________________________
conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
__________________________________________________________________________________________________
lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
lambda_2[0][0]
==================================================================================================
Total params: 8,861,918
Trainable params: 8,855,550
Non-trainable params: 6,368
__________________________________________________________________________________________________
and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?
Thank you.
python convnet yolo
$endgroup$
add a comment |
$begingroup$
I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.
Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.
Anyway the summary of my yolov3-tiny network is the following:
>>> model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input (InputLayer) [(None, 416, 416, 3) 0
__________________________________________________________________________________________________
conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
__________________________________________________________________________________________________
norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
__________________________________________________________________________________________________
conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
__________________________________________________________________________________________________
norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
__________________________________________________________________________________________________
conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
__________________________________________________________________________________________________
conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
__________________________________________________________________________________________________
conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
__________________________________________________________________________________________________
conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
__________________________________________________________________________________________________
conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
__________________________________________________________________________________________________
conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
__________________________________________________________________________________________________
norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
__________________________________________________________________________________________________
conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
__________________________________________________________________________________________________
norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
norm_5[0][0]
__________________________________________________________________________________________________
conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
__________________________________________________________________________________________________
conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
__________________________________________________________________________________________________
norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
__________________________________________________________________________________________________
norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
__________________________________________________________________________________________________
conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
__________________________________________________________________________________________________
conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
__________________________________________________________________________________________________
lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
lambda_2[0][0]
==================================================================================================
Total params: 8,861,918
Trainable params: 8,855,550
Non-trainable params: 6,368
__________________________________________________________________________________________________
and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?
Thank you.
python convnet yolo
$endgroup$
I have builded a Yolo V3 Tiny model in Tensorflow and I would like to load the weights provided by Yolo itself. I found here and reading the official Yolo code, that I can read yolov3-tiny.weights discarding the first 16 bytes and then reading the remaining bytes converting them in float32.
Now, yolov3-tiny.weights has 35.434.956 bytes, so (35.434.956-16)/4=8.858.735 float32 numbers and so I should have 8.858.735 weights.
Anyway the summary of my yolov3-tiny network is the following:
>>> model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input (InputLayer) [(None, 416, 416, 3) 0
__________________________________________________________________________________________________
conv_1 (Conv2D) (None, 416, 416, 16) 448 Input[0][0]
__________________________________________________________________________________________________
norm_1 (BatchNormalizationV1) (None, 416, 416, 16) 64 conv_1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 208, 208, 16) 0 norm_1[0][0]
__________________________________________________________________________________________________
conv_2 (Conv2D) (None, 208, 208, 32) 4640 max_pooling2d[0][0]
__________________________________________________________________________________________________
norm_2 (BatchNormalizationV1) (None, 208, 208, 32) 128 conv_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 104, 104, 32) 0 norm_2[0][0]
__________________________________________________________________________________________________
conv_3 (Conv2D) (None, 104, 104, 64) 18496 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
norm_3 (BatchNormalizationV1) (None, 104, 104, 64) 256 conv_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 52, 52, 64) 0 norm_3[0][0]
__________________________________________________________________________________________________
conv_4 (Conv2D) (None, 52, 52, 128) 73856 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
norm_4 (BatchNormalizationV1) (None, 52, 52, 128) 512 conv_4[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 128) 0 norm_4[0][0]
__________________________________________________________________________________________________
conv_5 (Conv2D) (None, 26, 26, 256) 295168 max_pooling2d_3[0][0]
__________________________________________________________________________________________________
norm_5 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 256) 0 norm_5[0][0]
__________________________________________________________________________________________________
conv_6 (Conv2D) (None, 13, 13, 512) 1180160 max_pooling2d_4[0][0]
__________________________________________________________________________________________________
norm_6 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_6[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 13, 13, 512) 0 norm_6[0][0]
__________________________________________________________________________________________________
conv_7 (Conv2D) (None, 13, 13, 1024) 4719616 max_pooling2d_5[0][0]
__________________________________________________________________________________________________
norm_7 (BatchNormalizationV1) (None, 13, 13, 1024) 4096 conv_7[0][0]
__________________________________________________________________________________________________
conv_8 (Conv2D) (None, 13, 13, 256) 262400 norm_7[0][0]
__________________________________________________________________________________________________
norm_8 (BatchNormalizationV1) (None, 13, 13, 256) 1024 conv_8[0][0]
__________________________________________________________________________________________________
conv_11 (Conv2D) (None, 13, 13, 128) 32896 norm_8[0][0]
__________________________________________________________________________________________________
norm_10 (BatchNormalizationV1) (None, 13, 13, 128) 512 conv_11[0][0]
__________________________________________________________________________________________________
lambda_1 (Lambda) (None, 26, 26, 128) 0 norm_10[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 26, 26, 384) 0 lambda_1[0][0]
norm_5[0][0]
__________________________________________________________________________________________________
conv_9 (Conv2D) (None, 13, 13, 512) 1180160 norm_8[0][0]
__________________________________________________________________________________________________
conv_12 (Conv2D) (None, 26, 26, 256) 884992 concatenate[0][0]
__________________________________________________________________________________________________
norm_9 (BatchNormalizationV1) (None, 13, 13, 512) 2048 conv_9[0][0]
__________________________________________________________________________________________________
norm_11 (BatchNormalizationV1) (None, 26, 26, 256) 1024 conv_12[0][0]
__________________________________________________________________________________________________
conv_10 (Conv2D) (None, 13, 13, 255) 130815 norm_9[0][0]
__________________________________________________________________________________________________
conv_13 (Conv2D) (None, 26, 26, 255) 65535 norm_11[0][0]
__________________________________________________________________________________________________
lambda (Lambda) (None, 507, 85) 0 conv_10[0][0]
__________________________________________________________________________________________________
lambda_2 (Lambda) (None, 2028, 85) 0 conv_13[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 2535, 85) 0 lambda[0][0]
lambda_2[0][0]
==================================================================================================
Total params: 8,861,918
Trainable params: 8,855,550
Non-trainable params: 6,368
__________________________________________________________________________________________________
and has 8.861.918 weights. There are (8.861.918-8.858.735)=3183 parameters more then those contained in yolov3-tiny.weights. Had I make any error building the network or am I missing something?
Thank you.
python convnet yolo
python convnet yolo
asked Mar 28 at 8:42
aleio1aleio1
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48131%2fyolo-v3-tiny-weights-file-contains-less-weights-then-expected%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48131%2fyolo-v3-tiny-weights-file-contains-less-weights-then-expected%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown