Can a neural network compute $y = x^2$? The Next CEO of Stack Overflow2019 Community Moderator ElectionDebugging Neural Network for (Natural Language) TaggingIs ML a good solution for identifying what the user wants to do from a sentence?Which functions neural net can't approximateQ Learning Neural network for tic tac toe Input implementation problemError in Neural NetworkWhat database should I use?Reinforcement learning - How to deal with varying number of actions which do number approximationMultiple-input multiple-output CNN with custom loss functionWhy are neuron activations stored as a column vector?Learning a highly non-linear function with a small data set

Multi tool use
Multi tool use

How to start emacs in "nothing" mode (`fundamental-mode`)

What can we do to stop prior company from asking us questions?

LWC - Unit Testing NavigationMixin.GenerateUrl

How easy is it to start Magic from scratch?

Can the Reverse Gravity spell affect the Meteor Swarm spell?

What flight has the highest ratio of time difference to flight time?

Why does the UK parliament need a vote on the political declaration?

Rotate a column

Extracting names from filename in bash

What was the first Unix version to run on a microcomputer?

How should I support this large drywall patch?

Indicator light circuit

Customer Requests (Sometimes) Drive Me Bonkers!

Is there a way to save my career from absolute disaster?

Can a caster that cast Polymorph on themselves stop concentrating at any point even if their Int is low?

Clustering points and summing up attributes per cluster in QGIS

Is it safe to use c_str() on a temporary string?

Beyond letters and diaries - exercises to explore characters' personalities and motivation

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Increase performance creating Mandelbrot set in python

At which OSI layer a user-generated data resides?

Should I tutor a student who I know has cheated on their homework?

Why didn't Khan get resurrected in the Genesis Explosion?

How do scammers retract money, while you can’t?



Can a neural network compute $y = x^2$?



The Next CEO of Stack Overflow
2019 Community Moderator ElectionDebugging Neural Network for (Natural Language) TaggingIs ML a good solution for identifying what the user wants to do from a sentence?Which functions neural net can't approximateQ Learning Neural network for tic tac toe Input implementation problemError in Neural NetworkWhat database should I use?Reinforcement learning - How to deal with varying number of actions which do number approximationMultiple-input multiple-output CNN with custom loss functionWhy are neuron activations stored as a column vector?Learning a highly non-linear function with a small data set










7












$begingroup$


In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



Can you suggest any ideas or reading on subject?










share|improve this question











$endgroup$
















    7












    $begingroup$


    In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



    Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



    If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



    Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



    Can you suggest any ideas or reading on subject?










    share|improve this question











    $endgroup$














      7












      7








      7


      3



      $begingroup$


      In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



      Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



      If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



      Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



      Can you suggest any ideas or reading on subject?










      share|improve this question











      $endgroup$




      In spirit of the famous Tensorflow Fizz Buzz joke and XOr problem I started to think, if it's possible to design a neural network that implements $y = x^2$ function?



      Given some representation of a number (e.g. as a vector in binary form, so that number 5 is represented as [1,0,1,0,0,0,0,...]), the neural network should learn to return its square - 25 in this case.



      If I could implement $y=x^2$, I could probably implement $y=x^3$ and generally any polynomial of x, and then with Taylor series I could approximate $y=sin(x)$, which would solve the Fizz Buzz problem - a neural network that can find remainder of the division.



      Clearly, just the linear part of NNs won't be able to perform this task, so if we could do the multiplication, it would be happening thanks to activation function.



      Can you suggest any ideas or reading on subject?







      machine-learning neural-network






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 22 at 17:25







      Boris Burkov

















      asked Mar 22 at 13:02









      Boris BurkovBoris Burkov

      1385




      1385




















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            Mar 22 at 13:23






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            Mar 22 at 15:21



















          7












          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$








          • 2




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            Mar 22 at 17:14






          • 1




            $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            Mar 22 at 17:23











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47787%2fcan-a-neural-network-compute-y-x2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          7












          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            Mar 22 at 13:23






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            Mar 22 at 15:21
















          7












          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$








          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            Mar 22 at 13:23






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            Mar 22 at 15:21














          7












          7








          7





          $begingroup$

          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.






          share|improve this answer









          $endgroup$



          Neural networks are also called as the universal function approximation which is based in the universal function approximation theorem. It states that :




          In the mathematical theory of artificial neural networks,
          the universal approximation theorem states that a feed-forward network
          with a single hidden layer containing a finite number of neurons can
          approximate continuous functions on compact subsets of Rn, under mild
          assumptions on the activation function




          Meaning a ANN with a non linear activation function could map the function which relates the input with the output. The function y = x^2 could be easily approximated using regression ANN.



          You can find an excellent lesson here with a notebook example.



          Also, because of such ability ANN could map complex relationships for example between an image and its labels.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Mar 22 at 13:20









          Shubham PanchalShubham Panchal

          36118




          36118







          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            Mar 22 at 13:23






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            Mar 22 at 15:21













          • 2




            $begingroup$
            Thank you very much, this is exactly what I was asking for!
            $endgroup$
            – Boris Burkov
            Mar 22 at 13:23






          • 2




            $begingroup$
            Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
            $endgroup$
            – Jeffrey
            Mar 22 at 15:21








          2




          2




          $begingroup$
          Thank you very much, this is exactly what I was asking for!
          $endgroup$
          – Boris Burkov
          Mar 22 at 13:23




          $begingroup$
          Thank you very much, this is exactly what I was asking for!
          $endgroup$
          – Boris Burkov
          Mar 22 at 13:23




          2




          2




          $begingroup$
          Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
          $endgroup$
          – Jeffrey
          Mar 22 at 15:21





          $begingroup$
          Although true, it a very bad idea to learn that. I fail to see where any generalization power would arise from. NN shine when there's something to generalize. Like CNN for vision that capture patterns, or RNN that can capture trends.
          $endgroup$
          – Jeffrey
          Mar 22 at 15:21












          7












          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$








          • 2




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            Mar 22 at 17:14






          • 1




            $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            Mar 22 at 17:23















          7












          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$








          • 2




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            Mar 22 at 17:14






          • 1




            $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            Mar 22 at 17:23













          7












          7








          7





          $begingroup$

          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.






          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$



          I think the answer of @ShubhamPanchal is a little bit misleading. Yes, it is true that by Cybenko's universal approximation theorem we can approximate $f(x)=x^2$ with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of $mathbbR^n$, under mild assumptions on the activation function.




          But the main problem is that the theorem has a very important
          limitation
          . The function needs to be defined on compact subsets of
          $mathbbR^n$
          (compact subset = bounded + closed subset). But why
          is this problematic?
          . When training the function approximator you
          will always have a finite data set. Hence, you will approximate the
          function inside a compact subset of $mathbbR^n$. But we can always
          find a point $x$ for which the approximation will probably fail. That
          being said. If you only want to approximate $f(x)=x^2$ on a compact
          subset of $mathbbR$ then we can answer your question with yes.
          But if you want to approximate $f(x)=x^2$ for all $xin mathbbR$
          then the answer is no (I exclude the trivial case in which you use
          a quadratic activation function).




          Side remark on Taylor approximation: You always have to keep in mind that a Taylor approximation is only a local approximation. If you only want to approximate a function in a predefined region then you should be able to use Taylor series. But approximating $sin(x)$ by the Taylor series evaluated at $x=0$ will give you horrible results for $xto 10000$ if you don't use enough terms in your Taylor expansion.







          share|improve this answer










          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          share|improve this answer



          share|improve this answer








          edited Mar 22 at 17:09





















          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.









          answered Mar 22 at 17:03









          MachineLearnerMachineLearner

          36910




          36910




          New contributor




          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          New contributor





          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          MachineLearner is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.







          • 2




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            Mar 22 at 17:14






          • 1




            $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            Mar 22 at 17:23












          • 2




            $begingroup$
            Nice catch! "compact set".
            $endgroup$
            – Esmailian
            Mar 22 at 17:14






          • 1




            $begingroup$
            Many thanks, mate! Eye-opener!
            $endgroup$
            – Boris Burkov
            Mar 22 at 17:23







          2




          2




          $begingroup$
          Nice catch! "compact set".
          $endgroup$
          – Esmailian
          Mar 22 at 17:14




          $begingroup$
          Nice catch! "compact set".
          $endgroup$
          – Esmailian
          Mar 22 at 17:14




          1




          1




          $begingroup$
          Many thanks, mate! Eye-opener!
          $endgroup$
          – Boris Burkov
          Mar 22 at 17:23




          $begingroup$
          Many thanks, mate! Eye-opener!
          $endgroup$
          – Boris Burkov
          Mar 22 at 17:23

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47787%2fcan-a-neural-network-compute-y-x2%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          JEmewO188Y4Aq6
          MHPcdMhvSN4Lyp1jy,a GTnRp

          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?