How does a computer interpret real numbers? The Next CEO of Stack OverflowPermuting natural numbersWhat advanced math topics are recommended for computer science?Can a computer count to infinity?Representing Computations on Transcendental NumbersHow to find a subset of numbers such that its average is close to the average of the full set?What precisely differentiates Computer Science from Mathematics in theoretical context?Mathematics topics or fields that increase computer programming proficiency?How does maths consistency impacts on computer science?“Mathematical Physics”'s equivalent for Computer ScienceHow to generate evenly distributed random numbers from the tics of a Geiger Counter?

What is the purpose of the Evocation wizard's Potent Cantrip feature?

Only print output after finding pattern

What happens if you roll doubles 3 times then land on "Go to jail?"

Clustering points and summing up attributes per cluster in QGIS

How to make a variable always equal to the result of some calculations?

Why does standard notation not preserve intervals (visually)

Does the Brexit deal have to be agreed by both Houses?

Customer Requests (Sometimes) Drive Me Bonkers!

What is the difference between Sanyaas and Vairagya?

At which OSI layer a user-generated data resides?

How did people program for Consoles with multiple CPUs?

How do we know the LHC results are robust?

Title page not generated

Can I equip Skullclamp on a creature I am sacrificing?

If the heap is initialized for security, then why is the stack uninitialized?

Why do we use the plural of movies in this phrase "We went to the movies last night."?

Failed to fetch jessie backports repository

How to write the block matrix in LaTex?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Anatomically Correct Strange Women In Ponds Distributing Swords

Why do airplanes bank sharply to the right after air-to-air refueling?

What is the difference between "behavior" and "behaviour"?

Monthly twice production release for my software project



How does a computer interpret real numbers?



The Next CEO of Stack OverflowPermuting natural numbersWhat advanced math topics are recommended for computer science?Can a computer count to infinity?Representing Computations on Transcendental NumbersHow to find a subset of numbers such that its average is close to the average of the full set?What precisely differentiates Computer Science from Mathematics in theoretical context?Mathematics topics or fields that increase computer programming proficiency?How does maths consistency impacts on computer science?“Mathematical Physics”'s equivalent for Computer ScienceHow to generate evenly distributed random numbers from the tics of a Geiger Counter?










2












$begingroup$


I understand that the modern day digital computer works on the binary number system. I can also get, that the binary representation can be converted to rational numbers.



But I want to know how does the present day computational model interpret real numbers.



For eg:




On a daily basis we can see that a computer can plot graphs. But here, graphs may be continuous entities. What is the
mathematical basis, that transforms a discrete (or countable, at most)
like the binary system to something mathematically continuous like a
say, the graph of $f(x) = x$.











share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Possible duplicate of this Wikipedia article: en.wikipedia.org/wiki/Floating-point_arithmetic
    $endgroup$
    – John Dvorak
    Mar 22 at 15:38






  • 1




    $begingroup$
    Aside from floating-point approximations, there are systems that deal with the reals as mathematical entities, most notably computer algebra systems and theorem provers. Representing a particular real number "directly" (for a certain interpretation of "directly") is restricted to the computable numbers.
    $endgroup$
    – Jeroen Mostert
    Mar 22 at 15:54






  • 1




    $begingroup$
    IEEE 754 is the answer.
    $endgroup$
    – Jasper
    Mar 22 at 16:13










  • $begingroup$
    I'm not sure exactly what you're trying to ask. It's OK that you didn't put a check mark beside either of the answers but since you didn't write the question clearly and you didn't get an answer that solved your problem and show that it solved your problem, I'm not sure what's you're trying to ask. Do you mean something like "How does a computer write a formal proof in ZF of a statement about all real numbers when some real numbers it cannot possibly store enough information to completely describe? If a computer is a physical device that follows simple laws, how can it be like the human brain
    $endgroup$
    – Timothy
    Mar 23 at 0:29











  • $begingroup$
    which can do creative thinking and start new mathematical research? The human brain can think of the statement that all statements provable in the formal system of Peano arithmetic are true and think of a proof of it but the formal system of Peano arithmetic itself cannot even describe that statement let alone prove it. Could the explanation be that although the human brain follows simple laws and when a human says that statement is obviously true, it is really just the result of the brain following those laws and making you say that sentence, that sentence actually represents a real statement
    $endgroup$
    – Timothy
    Mar 23 at 0:36















2












$begingroup$


I understand that the modern day digital computer works on the binary number system. I can also get, that the binary representation can be converted to rational numbers.



But I want to know how does the present day computational model interpret real numbers.



For eg:




On a daily basis we can see that a computer can plot graphs. But here, graphs may be continuous entities. What is the
mathematical basis, that transforms a discrete (or countable, at most)
like the binary system to something mathematically continuous like a
say, the graph of $f(x) = x$.











share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Possible duplicate of this Wikipedia article: en.wikipedia.org/wiki/Floating-point_arithmetic
    $endgroup$
    – John Dvorak
    Mar 22 at 15:38






  • 1




    $begingroup$
    Aside from floating-point approximations, there are systems that deal with the reals as mathematical entities, most notably computer algebra systems and theorem provers. Representing a particular real number "directly" (for a certain interpretation of "directly") is restricted to the computable numbers.
    $endgroup$
    – Jeroen Mostert
    Mar 22 at 15:54






  • 1




    $begingroup$
    IEEE 754 is the answer.
    $endgroup$
    – Jasper
    Mar 22 at 16:13










  • $begingroup$
    I'm not sure exactly what you're trying to ask. It's OK that you didn't put a check mark beside either of the answers but since you didn't write the question clearly and you didn't get an answer that solved your problem and show that it solved your problem, I'm not sure what's you're trying to ask. Do you mean something like "How does a computer write a formal proof in ZF of a statement about all real numbers when some real numbers it cannot possibly store enough information to completely describe? If a computer is a physical device that follows simple laws, how can it be like the human brain
    $endgroup$
    – Timothy
    Mar 23 at 0:29











  • $begingroup$
    which can do creative thinking and start new mathematical research? The human brain can think of the statement that all statements provable in the formal system of Peano arithmetic are true and think of a proof of it but the formal system of Peano arithmetic itself cannot even describe that statement let alone prove it. Could the explanation be that although the human brain follows simple laws and when a human says that statement is obviously true, it is really just the result of the brain following those laws and making you say that sentence, that sentence actually represents a real statement
    $endgroup$
    – Timothy
    Mar 23 at 0:36













2












2








2


2



$begingroup$


I understand that the modern day digital computer works on the binary number system. I can also get, that the binary representation can be converted to rational numbers.



But I want to know how does the present day computational model interpret real numbers.



For eg:




On a daily basis we can see that a computer can plot graphs. But here, graphs may be continuous entities. What is the
mathematical basis, that transforms a discrete (or countable, at most)
like the binary system to something mathematically continuous like a
say, the graph of $f(x) = x$.











share|cite|improve this question









$endgroup$




I understand that the modern day digital computer works on the binary number system. I can also get, that the binary representation can be converted to rational numbers.



But I want to know how does the present day computational model interpret real numbers.



For eg:




On a daily basis we can see that a computer can plot graphs. But here, graphs may be continuous entities. What is the
mathematical basis, that transforms a discrete (or countable, at most)
like the binary system to something mathematically continuous like a
say, the graph of $f(x) = x$.








mathematical-programming mathematical-foundations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 22 at 15:35









evil_potatoevil_potato

705189




705189







  • 4




    $begingroup$
    Possible duplicate of this Wikipedia article: en.wikipedia.org/wiki/Floating-point_arithmetic
    $endgroup$
    – John Dvorak
    Mar 22 at 15:38






  • 1




    $begingroup$
    Aside from floating-point approximations, there are systems that deal with the reals as mathematical entities, most notably computer algebra systems and theorem provers. Representing a particular real number "directly" (for a certain interpretation of "directly") is restricted to the computable numbers.
    $endgroup$
    – Jeroen Mostert
    Mar 22 at 15:54






  • 1




    $begingroup$
    IEEE 754 is the answer.
    $endgroup$
    – Jasper
    Mar 22 at 16:13










  • $begingroup$
    I'm not sure exactly what you're trying to ask. It's OK that you didn't put a check mark beside either of the answers but since you didn't write the question clearly and you didn't get an answer that solved your problem and show that it solved your problem, I'm not sure what's you're trying to ask. Do you mean something like "How does a computer write a formal proof in ZF of a statement about all real numbers when some real numbers it cannot possibly store enough information to completely describe? If a computer is a physical device that follows simple laws, how can it be like the human brain
    $endgroup$
    – Timothy
    Mar 23 at 0:29











  • $begingroup$
    which can do creative thinking and start new mathematical research? The human brain can think of the statement that all statements provable in the formal system of Peano arithmetic are true and think of a proof of it but the formal system of Peano arithmetic itself cannot even describe that statement let alone prove it. Could the explanation be that although the human brain follows simple laws and when a human says that statement is obviously true, it is really just the result of the brain following those laws and making you say that sentence, that sentence actually represents a real statement
    $endgroup$
    – Timothy
    Mar 23 at 0:36












  • 4




    $begingroup$
    Possible duplicate of this Wikipedia article: en.wikipedia.org/wiki/Floating-point_arithmetic
    $endgroup$
    – John Dvorak
    Mar 22 at 15:38






  • 1




    $begingroup$
    Aside from floating-point approximations, there are systems that deal with the reals as mathematical entities, most notably computer algebra systems and theorem provers. Representing a particular real number "directly" (for a certain interpretation of "directly") is restricted to the computable numbers.
    $endgroup$
    – Jeroen Mostert
    Mar 22 at 15:54






  • 1




    $begingroup$
    IEEE 754 is the answer.
    $endgroup$
    – Jasper
    Mar 22 at 16:13










  • $begingroup$
    I'm not sure exactly what you're trying to ask. It's OK that you didn't put a check mark beside either of the answers but since you didn't write the question clearly and you didn't get an answer that solved your problem and show that it solved your problem, I'm not sure what's you're trying to ask. Do you mean something like "How does a computer write a formal proof in ZF of a statement about all real numbers when some real numbers it cannot possibly store enough information to completely describe? If a computer is a physical device that follows simple laws, how can it be like the human brain
    $endgroup$
    – Timothy
    Mar 23 at 0:29











  • $begingroup$
    which can do creative thinking and start new mathematical research? The human brain can think of the statement that all statements provable in the formal system of Peano arithmetic are true and think of a proof of it but the formal system of Peano arithmetic itself cannot even describe that statement let alone prove it. Could the explanation be that although the human brain follows simple laws and when a human says that statement is obviously true, it is really just the result of the brain following those laws and making you say that sentence, that sentence actually represents a real statement
    $endgroup$
    – Timothy
    Mar 23 at 0:36







4




4




$begingroup$
Possible duplicate of this Wikipedia article: en.wikipedia.org/wiki/Floating-point_arithmetic
$endgroup$
– John Dvorak
Mar 22 at 15:38




$begingroup$
Possible duplicate of this Wikipedia article: en.wikipedia.org/wiki/Floating-point_arithmetic
$endgroup$
– John Dvorak
Mar 22 at 15:38




1




1




$begingroup$
Aside from floating-point approximations, there are systems that deal with the reals as mathematical entities, most notably computer algebra systems and theorem provers. Representing a particular real number "directly" (for a certain interpretation of "directly") is restricted to the computable numbers.
$endgroup$
– Jeroen Mostert
Mar 22 at 15:54




$begingroup$
Aside from floating-point approximations, there are systems that deal with the reals as mathematical entities, most notably computer algebra systems and theorem provers. Representing a particular real number "directly" (for a certain interpretation of "directly") is restricted to the computable numbers.
$endgroup$
– Jeroen Mostert
Mar 22 at 15:54




1




1




$begingroup$
IEEE 754 is the answer.
$endgroup$
– Jasper
Mar 22 at 16:13




$begingroup$
IEEE 754 is the answer.
$endgroup$
– Jasper
Mar 22 at 16:13












$begingroup$
I'm not sure exactly what you're trying to ask. It's OK that you didn't put a check mark beside either of the answers but since you didn't write the question clearly and you didn't get an answer that solved your problem and show that it solved your problem, I'm not sure what's you're trying to ask. Do you mean something like "How does a computer write a formal proof in ZF of a statement about all real numbers when some real numbers it cannot possibly store enough information to completely describe? If a computer is a physical device that follows simple laws, how can it be like the human brain
$endgroup$
– Timothy
Mar 23 at 0:29





$begingroup$
I'm not sure exactly what you're trying to ask. It's OK that you didn't put a check mark beside either of the answers but since you didn't write the question clearly and you didn't get an answer that solved your problem and show that it solved your problem, I'm not sure what's you're trying to ask. Do you mean something like "How does a computer write a formal proof in ZF of a statement about all real numbers when some real numbers it cannot possibly store enough information to completely describe? If a computer is a physical device that follows simple laws, how can it be like the human brain
$endgroup$
– Timothy
Mar 23 at 0:29













$begingroup$
which can do creative thinking and start new mathematical research? The human brain can think of the statement that all statements provable in the formal system of Peano arithmetic are true and think of a proof of it but the formal system of Peano arithmetic itself cannot even describe that statement let alone prove it. Could the explanation be that although the human brain follows simple laws and when a human says that statement is obviously true, it is really just the result of the brain following those laws and making you say that sentence, that sentence actually represents a real statement
$endgroup$
– Timothy
Mar 23 at 0:36




$begingroup$
which can do creative thinking and start new mathematical research? The human brain can think of the statement that all statements provable in the formal system of Peano arithmetic are true and think of a proof of it but the formal system of Peano arithmetic itself cannot even describe that statement let alone prove it. Could the explanation be that although the human brain follows simple laws and when a human says that statement is obviously true, it is really just the result of the brain following those laws and making you say that sentence, that sentence actually represents a real statement
$endgroup$
– Timothy
Mar 23 at 0:36










2 Answers
2






active

oldest

votes


















13












$begingroup$

They represent continuous quantities with discrete approximations. Mostly, this is done with floating point, which is analogous to scientific notation. Essentially, they work with something like $1.xyztimes 10^k$, with some appropriate number of decimal places (and in binary, rather than decimal).



It's also possible to work with some irrational numbers directly. For example, you could create yourself an object called "$sqrt2$" without particularly worrying about what it is, except that it obeys the usual arithmetic rules and that $(sqrt2)^2=2$. So then you could compute $$(sqrt2-1)(sqrt2+1) = (sqrt2)^2 + sqrt2 - sqrt2 - 1 = 2 - 1 = 1$$
exactly, as an algebraic fact that's not susceptible to rounding errors.



Note that, if you're plotting a graph on screen, regardless of how far you zoom in, you're plotting it as discrete pixels so using an appropriate number of significant figures basically gets you everything you need.






share|cite|improve this answer









$endgroup$








  • 7




    $begingroup$
    +1. For folks interested in more information about your second paragraph, some good search terms are symbolic computation and computer algebra.
    $endgroup$
    – ruakh
    Mar 22 at 22:57


















8












$begingroup$

The real numbers are uncountable. The set of real numbers that can be represented in any way is countable. Therefore, almost all real numbers cannot be represented by a computer at all.



The most common method is to store floating point numbers, which are reasonably precise approximations to real numbers that are not excessively large or small.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    In fact, infinitely many real numbers can't be represented. It's just a slightly smaller infinity than the infinite number of all real numbers. :)
    $endgroup$
    – Graham
    Mar 22 at 23:50







  • 6




    $begingroup$
    @Graham: It's actually the same infinite cardinality. gnasher729 is using "almost all" in a precise sense; see en.wikipedia.org/wiki/Almost_all for details.
    $endgroup$
    – ruakh
    Mar 23 at 0:11











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105923%2fhow-does-a-computer-interpret-real-numbers%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









13












$begingroup$

They represent continuous quantities with discrete approximations. Mostly, this is done with floating point, which is analogous to scientific notation. Essentially, they work with something like $1.xyztimes 10^k$, with some appropriate number of decimal places (and in binary, rather than decimal).



It's also possible to work with some irrational numbers directly. For example, you could create yourself an object called "$sqrt2$" without particularly worrying about what it is, except that it obeys the usual arithmetic rules and that $(sqrt2)^2=2$. So then you could compute $$(sqrt2-1)(sqrt2+1) = (sqrt2)^2 + sqrt2 - sqrt2 - 1 = 2 - 1 = 1$$
exactly, as an algebraic fact that's not susceptible to rounding errors.



Note that, if you're plotting a graph on screen, regardless of how far you zoom in, you're plotting it as discrete pixels so using an appropriate number of significant figures basically gets you everything you need.






share|cite|improve this answer









$endgroup$








  • 7




    $begingroup$
    +1. For folks interested in more information about your second paragraph, some good search terms are symbolic computation and computer algebra.
    $endgroup$
    – ruakh
    Mar 22 at 22:57















13












$begingroup$

They represent continuous quantities with discrete approximations. Mostly, this is done with floating point, which is analogous to scientific notation. Essentially, they work with something like $1.xyztimes 10^k$, with some appropriate number of decimal places (and in binary, rather than decimal).



It's also possible to work with some irrational numbers directly. For example, you could create yourself an object called "$sqrt2$" without particularly worrying about what it is, except that it obeys the usual arithmetic rules and that $(sqrt2)^2=2$. So then you could compute $$(sqrt2-1)(sqrt2+1) = (sqrt2)^2 + sqrt2 - sqrt2 - 1 = 2 - 1 = 1$$
exactly, as an algebraic fact that's not susceptible to rounding errors.



Note that, if you're plotting a graph on screen, regardless of how far you zoom in, you're plotting it as discrete pixels so using an appropriate number of significant figures basically gets you everything you need.






share|cite|improve this answer









$endgroup$








  • 7




    $begingroup$
    +1. For folks interested in more information about your second paragraph, some good search terms are symbolic computation and computer algebra.
    $endgroup$
    – ruakh
    Mar 22 at 22:57













13












13








13





$begingroup$

They represent continuous quantities with discrete approximations. Mostly, this is done with floating point, which is analogous to scientific notation. Essentially, they work with something like $1.xyztimes 10^k$, with some appropriate number of decimal places (and in binary, rather than decimal).



It's also possible to work with some irrational numbers directly. For example, you could create yourself an object called "$sqrt2$" without particularly worrying about what it is, except that it obeys the usual arithmetic rules and that $(sqrt2)^2=2$. So then you could compute $$(sqrt2-1)(sqrt2+1) = (sqrt2)^2 + sqrt2 - sqrt2 - 1 = 2 - 1 = 1$$
exactly, as an algebraic fact that's not susceptible to rounding errors.



Note that, if you're plotting a graph on screen, regardless of how far you zoom in, you're plotting it as discrete pixels so using an appropriate number of significant figures basically gets you everything you need.






share|cite|improve this answer









$endgroup$



They represent continuous quantities with discrete approximations. Mostly, this is done with floating point, which is analogous to scientific notation. Essentially, they work with something like $1.xyztimes 10^k$, with some appropriate number of decimal places (and in binary, rather than decimal).



It's also possible to work with some irrational numbers directly. For example, you could create yourself an object called "$sqrt2$" without particularly worrying about what it is, except that it obeys the usual arithmetic rules and that $(sqrt2)^2=2$. So then you could compute $$(sqrt2-1)(sqrt2+1) = (sqrt2)^2 + sqrt2 - sqrt2 - 1 = 2 - 1 = 1$$
exactly, as an algebraic fact that's not susceptible to rounding errors.



Note that, if you're plotting a graph on screen, regardless of how far you zoom in, you're plotting it as discrete pixels so using an appropriate number of significant figures basically gets you everything you need.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 22 at 16:03









David RicherbyDavid Richerby

69.2k15106195




69.2k15106195







  • 7




    $begingroup$
    +1. For folks interested in more information about your second paragraph, some good search terms are symbolic computation and computer algebra.
    $endgroup$
    – ruakh
    Mar 22 at 22:57












  • 7




    $begingroup$
    +1. For folks interested in more information about your second paragraph, some good search terms are symbolic computation and computer algebra.
    $endgroup$
    – ruakh
    Mar 22 at 22:57







7




7




$begingroup$
+1. For folks interested in more information about your second paragraph, some good search terms are symbolic computation and computer algebra.
$endgroup$
– ruakh
Mar 22 at 22:57




$begingroup$
+1. For folks interested in more information about your second paragraph, some good search terms are symbolic computation and computer algebra.
$endgroup$
– ruakh
Mar 22 at 22:57











8












$begingroup$

The real numbers are uncountable. The set of real numbers that can be represented in any way is countable. Therefore, almost all real numbers cannot be represented by a computer at all.



The most common method is to store floating point numbers, which are reasonably precise approximations to real numbers that are not excessively large or small.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    In fact, infinitely many real numbers can't be represented. It's just a slightly smaller infinity than the infinite number of all real numbers. :)
    $endgroup$
    – Graham
    Mar 22 at 23:50







  • 6




    $begingroup$
    @Graham: It's actually the same infinite cardinality. gnasher729 is using "almost all" in a precise sense; see en.wikipedia.org/wiki/Almost_all for details.
    $endgroup$
    – ruakh
    Mar 23 at 0:11















8












$begingroup$

The real numbers are uncountable. The set of real numbers that can be represented in any way is countable. Therefore, almost all real numbers cannot be represented by a computer at all.



The most common method is to store floating point numbers, which are reasonably precise approximations to real numbers that are not excessively large or small.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    In fact, infinitely many real numbers can't be represented. It's just a slightly smaller infinity than the infinite number of all real numbers. :)
    $endgroup$
    – Graham
    Mar 22 at 23:50







  • 6




    $begingroup$
    @Graham: It's actually the same infinite cardinality. gnasher729 is using "almost all" in a precise sense; see en.wikipedia.org/wiki/Almost_all for details.
    $endgroup$
    – ruakh
    Mar 23 at 0:11













8












8








8





$begingroup$

The real numbers are uncountable. The set of real numbers that can be represented in any way is countable. Therefore, almost all real numbers cannot be represented by a computer at all.



The most common method is to store floating point numbers, which are reasonably precise approximations to real numbers that are not excessively large or small.






share|cite|improve this answer









$endgroup$



The real numbers are uncountable. The set of real numbers that can be represented in any way is countable. Therefore, almost all real numbers cannot be represented by a computer at all.



The most common method is to store floating point numbers, which are reasonably precise approximations to real numbers that are not excessively large or small.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 22 at 18:44









gnasher729gnasher729

11.4k1217




11.4k1217







  • 1




    $begingroup$
    In fact, infinitely many real numbers can't be represented. It's just a slightly smaller infinity than the infinite number of all real numbers. :)
    $endgroup$
    – Graham
    Mar 22 at 23:50







  • 6




    $begingroup$
    @Graham: It's actually the same infinite cardinality. gnasher729 is using "almost all" in a precise sense; see en.wikipedia.org/wiki/Almost_all for details.
    $endgroup$
    – ruakh
    Mar 23 at 0:11












  • 1




    $begingroup$
    In fact, infinitely many real numbers can't be represented. It's just a slightly smaller infinity than the infinite number of all real numbers. :)
    $endgroup$
    – Graham
    Mar 22 at 23:50







  • 6




    $begingroup$
    @Graham: It's actually the same infinite cardinality. gnasher729 is using "almost all" in a precise sense; see en.wikipedia.org/wiki/Almost_all for details.
    $endgroup$
    – ruakh
    Mar 23 at 0:11







1




1




$begingroup$
In fact, infinitely many real numbers can't be represented. It's just a slightly smaller infinity than the infinite number of all real numbers. :)
$endgroup$
– Graham
Mar 22 at 23:50





$begingroup$
In fact, infinitely many real numbers can't be represented. It's just a slightly smaller infinity than the infinite number of all real numbers. :)
$endgroup$
– Graham
Mar 22 at 23:50





6




6




$begingroup$
@Graham: It's actually the same infinite cardinality. gnasher729 is using "almost all" in a precise sense; see en.wikipedia.org/wiki/Almost_all for details.
$endgroup$
– ruakh
Mar 23 at 0:11




$begingroup$
@Graham: It's actually the same infinite cardinality. gnasher729 is using "almost all" in a precise sense; see en.wikipedia.org/wiki/Almost_all for details.
$endgroup$
– ruakh
Mar 23 at 0:11

















draft saved

draft discarded
















































Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105923%2fhow-does-a-computer-interpret-real-numbers%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?