How feed a numpy array in batches in KerasLSTM neural network for music generationMLP batch iteration in pythonComputing weights in batch gradient descentHow to improve my self-written Neural Network?How to work with large amount of data overcoming RAM issues in pythonFast introduction to deep learning in Python, with advanced math and some machine learning backgrounds, but not much Python experienceAre deep learning models way over the required capacity for their datasets' estimated entropies?Large Numpy.Array for Multi-label Image Classification (CelebA Dataset)Deep learning with Tensorflow: training with big data setsKeras Loss Value Extremely High + Prediction Result same

Can the Supreme Court Overturn an Impeachment?

When were female captains banned from Starfleet?

Travelling outside the UK without a passport

Where does the bonus feat in the cleric starting package come from?

Creepy dinosaur pc game identification

Why did the HMS Bounty go back to a time when whales are already rare?

Freedom of speech and where it applies

Why does the Sun have different day lengths, but not the gas giants?

Creature in Shazam mid-credits scene?

what is different between Do you interest vs interested in something?

Could the E-bike drivetrain wear down till needing replacement after 400 km?

Count the occurrence of each unique word in the file

Will the technology I first learn determine the direction of my future career?

Is it better practice to read straight from sheet music rather than memorize it?

Can I use Seifert-van Kampen theorem infinite times

Argument list too long when zipping large list of certain files in a folder

Can somebody explain the brexit thing in one or two child-proof sentences?

Why did the EU agree to delay the Brexit deadline?

How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?

Is there an efficient solution to the travelling salesman problem with binary edge weights?

When a Cleric spontaneously casts a Cure Light Wounds spell, will a Pearl of Power recover the original spell or Cure Light Wounds?

Drawing ramified coverings with tikz

Non-trope happy ending?

Pre-mixing cryogenic fuels and using only one fuel tank



How feed a numpy array in batches in Keras


LSTM neural network for music generationMLP batch iteration in pythonComputing weights in batch gradient descentHow to improve my self-written Neural Network?How to work with large amount of data overcoming RAM issues in pythonFast introduction to deep learning in Python, with advanced math and some machine learning backgrounds, but not much Python experienceAre deep learning models way over the required capacity for their datasets' estimated entropies?Large Numpy.Array for Multi-label Image Classification (CelebA Dataset)Deep learning with Tensorflow: training with big data setsKeras Loss Value Extremely High + Prediction Result same













1












$begingroup$


I have the data in the following format:



1: DATA NUMPY ARRAY (trainX)



A numpy array of a set of numpy array of 3d np arrays.
To be more articulate the format is: [[3d data], [3d data], [3d data], [3d data], ...]



2: TARGET NUMPY ARRAY (trainY)



This consists of a numpy array of the corresponding target values for the above array.



The format is [target1, target2, target3]



The numpy array gets quite large, and considering that I'll be using a deep neural network, there will be many parameters that would need fitting into the memory as well.



How can I push the numpy arrays in batches for trainX and trainY










share|improve this question











$endgroup$
















    1












    $begingroup$


    I have the data in the following format:



    1: DATA NUMPY ARRAY (trainX)



    A numpy array of a set of numpy array of 3d np arrays.
    To be more articulate the format is: [[3d data], [3d data], [3d data], [3d data], ...]



    2: TARGET NUMPY ARRAY (trainY)



    This consists of a numpy array of the corresponding target values for the above array.



    The format is [target1, target2, target3]



    The numpy array gets quite large, and considering that I'll be using a deep neural network, there will be many parameters that would need fitting into the memory as well.



    How can I push the numpy arrays in batches for trainX and trainY










    share|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      I have the data in the following format:



      1: DATA NUMPY ARRAY (trainX)



      A numpy array of a set of numpy array of 3d np arrays.
      To be more articulate the format is: [[3d data], [3d data], [3d data], [3d data], ...]



      2: TARGET NUMPY ARRAY (trainY)



      This consists of a numpy array of the corresponding target values for the above array.



      The format is [target1, target2, target3]



      The numpy array gets quite large, and considering that I'll be using a deep neural network, there will be many parameters that would need fitting into the memory as well.



      How can I push the numpy arrays in batches for trainX and trainY










      share|improve this question











      $endgroup$




      I have the data in the following format:



      1: DATA NUMPY ARRAY (trainX)



      A numpy array of a set of numpy array of 3d np arrays.
      To be more articulate the format is: [[3d data], [3d data], [3d data], [3d data], ...]



      2: TARGET NUMPY ARRAY (trainY)



      This consists of a numpy array of the corresponding target values for the above array.



      The format is [target1, target2, target3]



      The numpy array gets quite large, and considering that I'll be using a deep neural network, there will be many parameters that would need fitting into the memory as well.



      How can I push the numpy arrays in batches for trainX and trainY







      machine-learning neural-network deep-learning keras numpy






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 19 at 15:07









      Alireza Zolanvari

      35716




      35716










      asked Mar 19 at 14:53









      thegravitythegravity

      64




      64




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          You should implement a generator and feed it to model.fit_generator().



          Your generator may look like this:



          def batch_generator(X, Y, batch_size = BATCH_SIZE):
          indices = np.arange(len(X))
          batch=[]
          while True:
          # it might be a good idea to shuffle your data before each epoch
          np.random.shuffle(indices)
          for i in indices:
          batch.append(i)
          if len(batch)==batch_size:
          yield X[batch], Y[batch]
          batch=[]



          And then, somewhere in your code:



          train_generator = batch_generator(trainX, trainY, batch_size = 64)
          model.fit_generator(train_generator , ....)


          UPD.:
          I order to avoid placing all your data into memory beforehand, you can modify the generator to consume only the identifiers of your data-set and then load your data on-demand:



          def batch_generator(ids, batch_size = BATCH_SIZE):
          batch=[]
          while True:
          np.random.shuffle(ids)
          for i in ids:
          batch.append(i)
          if len(batch)==batch_size:
          yield load_data(batch)
          batch=[]



          Your loader function may look like this:



          def load_data(ids):
          X = []
          Y = []

          for i in ids:
          # read one or more samples from your storage, do pre-processing, etc.
          # for example:
          x = imread(f'image_i.jpg')
          ...
          y = targets[i]

          X.append(x)
          Y.append(y)

          return np.array(X), np.array(Y)





          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks so much for answering. Wouldn't batch_generator require X and Y as a numpy array already loaded in the memory which would still take up half the space. Is there a solution for that?
            $endgroup$
            – thegravity
            Mar 20 at 1:07










          • $begingroup$
            yes, there is a solution for that. please, see the updated comment.
            $endgroup$
            – m0nzderr
            Mar 20 at 1:36










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47623%2fhow-feed-a-numpy-array-in-batches-in-keras%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          You should implement a generator and feed it to model.fit_generator().



          Your generator may look like this:



          def batch_generator(X, Y, batch_size = BATCH_SIZE):
          indices = np.arange(len(X))
          batch=[]
          while True:
          # it might be a good idea to shuffle your data before each epoch
          np.random.shuffle(indices)
          for i in indices:
          batch.append(i)
          if len(batch)==batch_size:
          yield X[batch], Y[batch]
          batch=[]



          And then, somewhere in your code:



          train_generator = batch_generator(trainX, trainY, batch_size = 64)
          model.fit_generator(train_generator , ....)


          UPD.:
          I order to avoid placing all your data into memory beforehand, you can modify the generator to consume only the identifiers of your data-set and then load your data on-demand:



          def batch_generator(ids, batch_size = BATCH_SIZE):
          batch=[]
          while True:
          np.random.shuffle(ids)
          for i in ids:
          batch.append(i)
          if len(batch)==batch_size:
          yield load_data(batch)
          batch=[]



          Your loader function may look like this:



          def load_data(ids):
          X = []
          Y = []

          for i in ids:
          # read one or more samples from your storage, do pre-processing, etc.
          # for example:
          x = imread(f'image_i.jpg')
          ...
          y = targets[i]

          X.append(x)
          Y.append(y)

          return np.array(X), np.array(Y)





          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks so much for answering. Wouldn't batch_generator require X and Y as a numpy array already loaded in the memory which would still take up half the space. Is there a solution for that?
            $endgroup$
            – thegravity
            Mar 20 at 1:07










          • $begingroup$
            yes, there is a solution for that. please, see the updated comment.
            $endgroup$
            – m0nzderr
            Mar 20 at 1:36















          2












          $begingroup$

          You should implement a generator and feed it to model.fit_generator().



          Your generator may look like this:



          def batch_generator(X, Y, batch_size = BATCH_SIZE):
          indices = np.arange(len(X))
          batch=[]
          while True:
          # it might be a good idea to shuffle your data before each epoch
          np.random.shuffle(indices)
          for i in indices:
          batch.append(i)
          if len(batch)==batch_size:
          yield X[batch], Y[batch]
          batch=[]



          And then, somewhere in your code:



          train_generator = batch_generator(trainX, trainY, batch_size = 64)
          model.fit_generator(train_generator , ....)


          UPD.:
          I order to avoid placing all your data into memory beforehand, you can modify the generator to consume only the identifiers of your data-set and then load your data on-demand:



          def batch_generator(ids, batch_size = BATCH_SIZE):
          batch=[]
          while True:
          np.random.shuffle(ids)
          for i in ids:
          batch.append(i)
          if len(batch)==batch_size:
          yield load_data(batch)
          batch=[]



          Your loader function may look like this:



          def load_data(ids):
          X = []
          Y = []

          for i in ids:
          # read one or more samples from your storage, do pre-processing, etc.
          # for example:
          x = imread(f'image_i.jpg')
          ...
          y = targets[i]

          X.append(x)
          Y.append(y)

          return np.array(X), np.array(Y)





          share|improve this answer











          $endgroup$












          • $begingroup$
            Thanks so much for answering. Wouldn't batch_generator require X and Y as a numpy array already loaded in the memory which would still take up half the space. Is there a solution for that?
            $endgroup$
            – thegravity
            Mar 20 at 1:07










          • $begingroup$
            yes, there is a solution for that. please, see the updated comment.
            $endgroup$
            – m0nzderr
            Mar 20 at 1:36













          2












          2








          2





          $begingroup$

          You should implement a generator and feed it to model.fit_generator().



          Your generator may look like this:



          def batch_generator(X, Y, batch_size = BATCH_SIZE):
          indices = np.arange(len(X))
          batch=[]
          while True:
          # it might be a good idea to shuffle your data before each epoch
          np.random.shuffle(indices)
          for i in indices:
          batch.append(i)
          if len(batch)==batch_size:
          yield X[batch], Y[batch]
          batch=[]



          And then, somewhere in your code:



          train_generator = batch_generator(trainX, trainY, batch_size = 64)
          model.fit_generator(train_generator , ....)


          UPD.:
          I order to avoid placing all your data into memory beforehand, you can modify the generator to consume only the identifiers of your data-set and then load your data on-demand:



          def batch_generator(ids, batch_size = BATCH_SIZE):
          batch=[]
          while True:
          np.random.shuffle(ids)
          for i in ids:
          batch.append(i)
          if len(batch)==batch_size:
          yield load_data(batch)
          batch=[]



          Your loader function may look like this:



          def load_data(ids):
          X = []
          Y = []

          for i in ids:
          # read one or more samples from your storage, do pre-processing, etc.
          # for example:
          x = imread(f'image_i.jpg')
          ...
          y = targets[i]

          X.append(x)
          Y.append(y)

          return np.array(X), np.array(Y)





          share|improve this answer











          $endgroup$



          You should implement a generator and feed it to model.fit_generator().



          Your generator may look like this:



          def batch_generator(X, Y, batch_size = BATCH_SIZE):
          indices = np.arange(len(X))
          batch=[]
          while True:
          # it might be a good idea to shuffle your data before each epoch
          np.random.shuffle(indices)
          for i in indices:
          batch.append(i)
          if len(batch)==batch_size:
          yield X[batch], Y[batch]
          batch=[]



          And then, somewhere in your code:



          train_generator = batch_generator(trainX, trainY, batch_size = 64)
          model.fit_generator(train_generator , ....)


          UPD.:
          I order to avoid placing all your data into memory beforehand, you can modify the generator to consume only the identifiers of your data-set and then load your data on-demand:



          def batch_generator(ids, batch_size = BATCH_SIZE):
          batch=[]
          while True:
          np.random.shuffle(ids)
          for i in ids:
          batch.append(i)
          if len(batch)==batch_size:
          yield load_data(batch)
          batch=[]



          Your loader function may look like this:



          def load_data(ids):
          X = []
          Y = []

          for i in ids:
          # read one or more samples from your storage, do pre-processing, etc.
          # for example:
          x = imread(f'image_i.jpg')
          ...
          y = targets[i]

          X.append(x)
          Y.append(y)

          return np.array(X), np.array(Y)






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Mar 20 at 1:45

























          answered Mar 20 at 0:45









          m0nzderrm0nzderr

          663




          663











          • $begingroup$
            Thanks so much for answering. Wouldn't batch_generator require X and Y as a numpy array already loaded in the memory which would still take up half the space. Is there a solution for that?
            $endgroup$
            – thegravity
            Mar 20 at 1:07










          • $begingroup$
            yes, there is a solution for that. please, see the updated comment.
            $endgroup$
            – m0nzderr
            Mar 20 at 1:36
















          • $begingroup$
            Thanks so much for answering. Wouldn't batch_generator require X and Y as a numpy array already loaded in the memory which would still take up half the space. Is there a solution for that?
            $endgroup$
            – thegravity
            Mar 20 at 1:07










          • $begingroup$
            yes, there is a solution for that. please, see the updated comment.
            $endgroup$
            – m0nzderr
            Mar 20 at 1:36















          $begingroup$
          Thanks so much for answering. Wouldn't batch_generator require X and Y as a numpy array already loaded in the memory which would still take up half the space. Is there a solution for that?
          $endgroup$
          – thegravity
          Mar 20 at 1:07




          $begingroup$
          Thanks so much for answering. Wouldn't batch_generator require X and Y as a numpy array already loaded in the memory which would still take up half the space. Is there a solution for that?
          $endgroup$
          – thegravity
          Mar 20 at 1:07












          $begingroup$
          yes, there is a solution for that. please, see the updated comment.
          $endgroup$
          – m0nzderr
          Mar 20 at 1:36




          $begingroup$
          yes, there is a solution for that. please, see the updated comment.
          $endgroup$
          – m0nzderr
          Mar 20 at 1:36

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47623%2fhow-feed-a-numpy-array-in-batches-in-keras%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?