Numerical Minimization of Large ExpressionCombined numerical minimization and maximizationusing array elements in minimization$L_infty$ norm minimizationNumerical Instability?Simple minimization not evaluatingMinimization and integrationIssue with numerical minimizationMinimization over the integersProducing a smooth curve from numerical minimizationoptimization problem with NDSolve and Import cannot get any results, even without error message

How do researchers send unsolicited emails asking for feedback on their works?

PTIJ: Where did Achashverosh's years wander off to?

Which partition to make active?

Would mining huge amounts of resources on the Moon change its orbit?

Pre-Employment Background Check With Consent For Future Checks

How to balance a monster modification (zombie)?

Are hand made posters acceptable in Academia?

Will my managed file get deleted?

Why is participating in the European Parliamentary elections used as a threat?

What is this high flying aircraft over Pennsylvania?

Single word to change groups

Mortal danger in mid-grade literature

How are passwords stolen from companies if they only store hashes?

Print last inputted byte

Do I need an EFI partition for each 18.04 ubuntu I have on my HD?

What is the difference between something being completely legal and being completely decriminalized?

When is composition of meromorphic functions meromorphic

Have any astronauts/cosmonauts died in space?

Should a narrator ever describe things based on a characters view instead of fact?

Determine voltage drop over 10G resistors with cheap multimeter

Unfrosted light bulb

How to understand 「僕は誰より彼女が好きなんだ。」

Weird lines in Microsoft Word

UK Tourist Visa- Enquiry



Numerical Minimization of Large Expression


Combined numerical minimization and maximizationusing array elements in minimization$L_infty$ norm minimizationNumerical Instability?Simple minimization not evaluatingMinimization and integrationIssue with numerical minimizationMinimization over the integersProducing a smooth curve from numerical minimizationoptimization problem with NDSolve and Import cannot get any results, even without error message













1












$begingroup$


I want to minimize a function which contains ArcTan functions. The function is also very complicated.



I have the following code.



LenFact = 1.3745/0.31571;
xC = 0.157392 LenFact; yC = 0.035495 LenFact;

q=x1[t],y1[t],x2[t],y2[t],x3[t],y3[t],x4[t],y4[t],x5[t],y5[t],x6[t],y6[t];

CE =
-0.609155 + x1[t]^2 + y1[t]^2,
-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] + y2[t])^2,
-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 + y2[t])^2,
-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] + y6[t])^2,
-0.428366 + ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]],
-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] + y4[t])^2,
-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] + y5[t])^2,
-0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]],
-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] + y6[t])^2,
-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] + y3[t])^2,
-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]]
;

y6Start = 0.15 LenFact;

VPenalty=3.90351 + 1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
3006.52 (2.92648 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
1082.47 (2.78921 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
4.93484 y5[t] + 97.0584 y6[t] +
1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
x1[t]^2 +
y1[t]^2)^2 + (-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
y2[t])^2)^2 + (-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
y2[t])^2)^2 + (-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
y3[t])^2)^2 + (-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
y4[t])^2)^2 + (-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
y5[t])^2)^2 + (-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
y6[t])^2)^2 + (-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
y6[t])^2)^2);

[Theta]1 = ArcTan[x1[t], y1[t]];
[Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
[Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
[Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
[Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
[Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
[Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0,
90 [Degree] < [Theta]1 < 180 [Degree],
20 [Degree] < [Theta]21 < 95 [Degree],
145 [Degree] < [Theta]3 < 180 [Degree],
80 [Degree] < [Theta]5 < 100 [Degree], 0 < y6[t] < y6Start,
q, Reals, MaxIterations -> 10^4]


It is running for several hours with no result. Can any body suggest any specific way of minimizing such large scale expression? I also could not give initial points. It is always showing syntax error. Is it not possible to give one initial point only for each variable?










share|improve this question











$endgroup$











  • $begingroup$
    I am sorry. I have incorporated CE in the code now.
    $endgroup$
    – Soumyajit Roy
    2 days ago










  • $begingroup$
    And what about y6Start?
    $endgroup$
    – Henrik Schumacher
    2 days ago






  • 2




    $begingroup$
    And after all: What is the context? This looks a bit like discrete bending energy minimization with some angle constraints... Maybe the problem can be rephrased into another one that is simpler to solve.
    $endgroup$
    – Henrik Schumacher
    2 days ago











  • $begingroup$
    y6Start = 0.15 LenFact; This is about finding the static equilibrium of a mechanism. Static equilibrium states can be found by minimizing the potential energy function.
    $endgroup$
    – Soumyajit Roy
    2 days ago















1












$begingroup$


I want to minimize a function which contains ArcTan functions. The function is also very complicated.



I have the following code.



LenFact = 1.3745/0.31571;
xC = 0.157392 LenFact; yC = 0.035495 LenFact;

q=x1[t],y1[t],x2[t],y2[t],x3[t],y3[t],x4[t],y4[t],x5[t],y5[t],x6[t],y6[t];

CE =
-0.609155 + x1[t]^2 + y1[t]^2,
-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] + y2[t])^2,
-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 + y2[t])^2,
-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] + y6[t])^2,
-0.428366 + ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]],
-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] + y4[t])^2,
-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] + y5[t])^2,
-0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]],
-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] + y6[t])^2,
-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] + y3[t])^2,
-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]]
;

y6Start = 0.15 LenFact;

VPenalty=3.90351 + 1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
3006.52 (2.92648 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
1082.47 (2.78921 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
4.93484 y5[t] + 97.0584 y6[t] +
1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
x1[t]^2 +
y1[t]^2)^2 + (-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
y2[t])^2)^2 + (-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
y2[t])^2)^2 + (-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
y3[t])^2)^2 + (-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
y4[t])^2)^2 + (-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
y5[t])^2)^2 + (-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
y6[t])^2)^2 + (-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
y6[t])^2)^2);

[Theta]1 = ArcTan[x1[t], y1[t]];
[Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
[Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
[Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
[Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
[Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
[Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0,
90 [Degree] < [Theta]1 < 180 [Degree],
20 [Degree] < [Theta]21 < 95 [Degree],
145 [Degree] < [Theta]3 < 180 [Degree],
80 [Degree] < [Theta]5 < 100 [Degree], 0 < y6[t] < y6Start,
q, Reals, MaxIterations -> 10^4]


It is running for several hours with no result. Can any body suggest any specific way of minimizing such large scale expression? I also could not give initial points. It is always showing syntax error. Is it not possible to give one initial point only for each variable?










share|improve this question











$endgroup$











  • $begingroup$
    I am sorry. I have incorporated CE in the code now.
    $endgroup$
    – Soumyajit Roy
    2 days ago










  • $begingroup$
    And what about y6Start?
    $endgroup$
    – Henrik Schumacher
    2 days ago






  • 2




    $begingroup$
    And after all: What is the context? This looks a bit like discrete bending energy minimization with some angle constraints... Maybe the problem can be rephrased into another one that is simpler to solve.
    $endgroup$
    – Henrik Schumacher
    2 days ago











  • $begingroup$
    y6Start = 0.15 LenFact; This is about finding the static equilibrium of a mechanism. Static equilibrium states can be found by minimizing the potential energy function.
    $endgroup$
    – Soumyajit Roy
    2 days ago













1












1








1





$begingroup$


I want to minimize a function which contains ArcTan functions. The function is also very complicated.



I have the following code.



LenFact = 1.3745/0.31571;
xC = 0.157392 LenFact; yC = 0.035495 LenFact;

q=x1[t],y1[t],x2[t],y2[t],x3[t],y3[t],x4[t],y4[t],x5[t],y5[t],x6[t],y6[t];

CE =
-0.609155 + x1[t]^2 + y1[t]^2,
-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] + y2[t])^2,
-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 + y2[t])^2,
-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] + y6[t])^2,
-0.428366 + ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]],
-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] + y4[t])^2,
-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] + y5[t])^2,
-0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]],
-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] + y6[t])^2,
-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] + y3[t])^2,
-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]]
;

y6Start = 0.15 LenFact;

VPenalty=3.90351 + 1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
3006.52 (2.92648 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
1082.47 (2.78921 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
4.93484 y5[t] + 97.0584 y6[t] +
1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
x1[t]^2 +
y1[t]^2)^2 + (-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
y2[t])^2)^2 + (-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
y2[t])^2)^2 + (-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
y3[t])^2)^2 + (-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
y4[t])^2)^2 + (-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
y5[t])^2)^2 + (-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
y6[t])^2)^2 + (-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
y6[t])^2)^2);

[Theta]1 = ArcTan[x1[t], y1[t]];
[Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
[Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
[Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
[Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
[Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
[Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0,
90 [Degree] < [Theta]1 < 180 [Degree],
20 [Degree] < [Theta]21 < 95 [Degree],
145 [Degree] < [Theta]3 < 180 [Degree],
80 [Degree] < [Theta]5 < 100 [Degree], 0 < y6[t] < y6Start,
q, Reals, MaxIterations -> 10^4]


It is running for several hours with no result. Can any body suggest any specific way of minimizing such large scale expression? I also could not give initial points. It is always showing syntax error. Is it not possible to give one initial point only for each variable?










share|improve this question











$endgroup$




I want to minimize a function which contains ArcTan functions. The function is also very complicated.



I have the following code.



LenFact = 1.3745/0.31571;
xC = 0.157392 LenFact; yC = 0.035495 LenFact;

q=x1[t],y1[t],x2[t],y2[t],x3[t],y3[t],x4[t],y4[t],x5[t],y5[t],x6[t],y6[t];

CE =
-0.609155 + x1[t]^2 + y1[t]^2,
-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] + y2[t])^2,
-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 + y2[t])^2,
-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] + y6[t])^2,
-0.428366 + ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]],
-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] + y4[t])^2,
-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] + y5[t])^2,
-0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]],
-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] + y6[t])^2,
-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] + y3[t])^2,
-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]]
;

y6Start = 0.15 LenFact;

VPenalty=3.90351 + 1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
3006.52 (2.92648 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
1082.47 (2.78921 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
4.93484 y5[t] + 97.0584 y6[t] +
1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
x1[t]^2 +
y1[t]^2)^2 + (-1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
y2[t])^2)^2 + (-0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
y2[t])^2)^2 + (-0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
y3[t])^2)^2 + (-0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
y4[t])^2)^2 + (-0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
y5[t])^2)^2 + (-1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
y6[t])^2)^2 + (-0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
y6[t])^2)^2);

[Theta]1 = ArcTan[x1[t], y1[t]];
[Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
[Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
[Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
[Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
[Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
[Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0,
90 [Degree] < [Theta]1 < 180 [Degree],
20 [Degree] < [Theta]21 < 95 [Degree],
145 [Degree] < [Theta]3 < 180 [Degree],
80 [Degree] < [Theta]5 < 100 [Degree], 0 < y6[t] < y6Start,
q, Reals, MaxIterations -> 10^4]


It is running for several hours with no result. Can any body suggest any specific way of minimizing such large scale expression? I also could not give initial points. It is always showing syntax error. Is it not possible to give one initial point only for each variable?







mathematical-optimization






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 days ago







Soumyajit Roy

















asked 2 days ago









Soumyajit RoySoumyajit Roy

1809




1809











  • $begingroup$
    I am sorry. I have incorporated CE in the code now.
    $endgroup$
    – Soumyajit Roy
    2 days ago










  • $begingroup$
    And what about y6Start?
    $endgroup$
    – Henrik Schumacher
    2 days ago






  • 2




    $begingroup$
    And after all: What is the context? This looks a bit like discrete bending energy minimization with some angle constraints... Maybe the problem can be rephrased into another one that is simpler to solve.
    $endgroup$
    – Henrik Schumacher
    2 days ago











  • $begingroup$
    y6Start = 0.15 LenFact; This is about finding the static equilibrium of a mechanism. Static equilibrium states can be found by minimizing the potential energy function.
    $endgroup$
    – Soumyajit Roy
    2 days ago
















  • $begingroup$
    I am sorry. I have incorporated CE in the code now.
    $endgroup$
    – Soumyajit Roy
    2 days ago










  • $begingroup$
    And what about y6Start?
    $endgroup$
    – Henrik Schumacher
    2 days ago






  • 2




    $begingroup$
    And after all: What is the context? This looks a bit like discrete bending energy minimization with some angle constraints... Maybe the problem can be rephrased into another one that is simpler to solve.
    $endgroup$
    – Henrik Schumacher
    2 days ago











  • $begingroup$
    y6Start = 0.15 LenFact; This is about finding the static equilibrium of a mechanism. Static equilibrium states can be found by minimizing the potential energy function.
    $endgroup$
    – Soumyajit Roy
    2 days ago















$begingroup$
I am sorry. I have incorporated CE in the code now.
$endgroup$
– Soumyajit Roy
2 days ago




$begingroup$
I am sorry. I have incorporated CE in the code now.
$endgroup$
– Soumyajit Roy
2 days ago












$begingroup$
And what about y6Start?
$endgroup$
– Henrik Schumacher
2 days ago




$begingroup$
And what about y6Start?
$endgroup$
– Henrik Schumacher
2 days ago




2




2




$begingroup$
And after all: What is the context? This looks a bit like discrete bending energy minimization with some angle constraints... Maybe the problem can be rephrased into another one that is simpler to solve.
$endgroup$
– Henrik Schumacher
2 days ago





$begingroup$
And after all: What is the context? This looks a bit like discrete bending energy minimization with some angle constraints... Maybe the problem can be rephrased into another one that is simpler to solve.
$endgroup$
– Henrik Schumacher
2 days ago













$begingroup$
y6Start = 0.15 LenFact; This is about finding the static equilibrium of a mechanism. Static equilibrium states can be found by minimizing the potential energy function.
$endgroup$
– Soumyajit Roy
2 days ago




$begingroup$
y6Start = 0.15 LenFact; This is about finding the static equilibrium of a mechanism. Static equilibrium states can be found by minimizing the potential energy function.
$endgroup$
– Soumyajit Roy
2 days ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

I corrected typos. The code is fast and gives an answer, albeit with messages.



LenFact = 1.3745/0.31571;
xC = 0.157392 LenFact; yC = 0.035495 LenFact;

q = x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t], x5[t],
y5[t], x6[t],
y6[t]; CE = -0.609155 + x1[t]^2 +
y1[t]^2, -0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
y2[t])^2, -1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
y2[t])^2, -1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
y6[t])^2, -0.428366 +
ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] +
y6[t]], -0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
y4[t])^2, -0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
y5[t])^2, -0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] +
y5[t]], -0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
y6[t])^2, -0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
y3[t])^2, -ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]];

VPenalty = 3.90351 +
1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
3006.52 (2.92648 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
1082.47 (2.78921 -
1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
4.93484 y5[t] + 97.0584 y6[t] +
1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
x1[t]^2 +
y1[t]^2)^2 + (-1.64323 + (-0.685234 +
x2[t])^2 + (-0.154534 +
y2[t])^2)^2 + (-0.0383062 + (-x1[t] +
x2[t])^2 + (-y1[t] +
y2[t])^2)^2 + (-0.0138516 + (-x2[t] +
x3[t])^2 + (-y2[t] +
y3[t])^2)^2 + (-0.783885 + (-x3[t] +
x4[t])^2 + (-y3[t] +
y4[t])^2)^2 + (-0.0353049 + (-x4[t] +
x5[t])^2 + (-y4[t] + y5[t])^2)^2 + (-1.88925 + (-x1[t] +
x6[t])^2 + (-y1[t] +
y6[t])^2)^2 + (-0.0228637 + (-x5[t] +
x6[t])^2 + (-y5[t] + y6[t])^2)^2);

[Theta]1 = ArcTan[x1[t], y1[t]];
[Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
[Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
[Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
[Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
[Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
[Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

With[y6Start = 0.15 LenFact,
eqbr = NMinimize[VPenalty[[1, 1]],
Flatten[CE] == Table[0, Length[CE]], Pi/2 < [Theta]1 < Pi,
20*Pi/180 < [Theta]21 < 95*Pi/180, 145*Pi/180 < [Theta]3 < Pi,
80*Pi/180 < [Theta]5 < 100*Pi/180, 0 < y6[t] < y6Start, q,
Reals]]
(*1652.07, x1[t] -> -0.729157, y1[t] -> 0.278358, x2[t] -> -0.573507,
y2[t] -> 0.397027, x3[t] -> -0.457944, y3[t] -> 0.374765,
x4[t] -> 0.423225, y4[t] -> 0.460944, x5[t] -> 0.60875,
y5[t] -> 0.431194, x6[t] -> 0.611298, y6[t] -> 0.582379*)





share|improve this answer









$endgroup$












  • $begingroup$
    Thanks Alex. At least the constraints are matching to a reasonable degree. Although I am still not sure about the obtained value of Vtotal to be the global one.
    $endgroup$
    – Soumyajit Roy
    2 days ago










  • $begingroup$
    Here VPenalty[] is a non-linear function, so the min can be local.
    $endgroup$
    – Alex Trounev
    2 days ago


















2












$begingroup$

The method "RandomSearch" usually gives a result reasonably quickly (other than using FindMinimum). It's less robust, though, than the other methods. The following takes about 30 sec.



eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0, 
90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °,
145 ° < θ3 < 180 °, 80 ° < θ5 < 100 °, 0 < y6[t] < y6Start, q,
Method -> "RandomSearch"]



NMinimize::incst: NMinimize was unable to generate any initial points satisfying the inequality constraints...




(*
161.292, x1[t] -> -0.718754, y1[t] -> 0.30422, x2[t] -> -0.567146,
y2[t] -> 0.427983, x3[t] -> -0.452162, y3[t] -> 0.402877,
x4[t] -> 0.424915, y4[t] -> 0.523793, x5[t] -> 0.611471,
y5[t] -> 0.501395, x6[t] -> 0.610863, y6[t] -> 0.652602
*)


While NMinimize did not find good starting points, it found a solution within the constraints:



90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °, 145 ° < θ3 < 180 °, 
80 ° < θ5 < 100 °, 0 < y6[t] < y6Start /.
Last@eqbr
(* True, True, True, True, True *)





share|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "387"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193379%2fnumerical-minimization-of-large-expression%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    I corrected typos. The code is fast and gives an answer, albeit with messages.



    LenFact = 1.3745/0.31571;
    xC = 0.157392 LenFact; yC = 0.035495 LenFact;

    q = x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t], x5[t],
    y5[t], x6[t],
    y6[t]; CE = -0.609155 + x1[t]^2 +
    y1[t]^2, -0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
    y2[t])^2, -1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
    y2[t])^2, -1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
    y6[t])^2, -0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] +
    y6[t]], -0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
    y4[t])^2, -0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
    y5[t])^2, -0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] +
    y5[t]], -0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
    y6[t])^2, -0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
    y3[t])^2, -ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]];

    VPenalty = 3.90351 +
    1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
    3006.52 (2.92648 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
    1082.47 (2.78921 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
    ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
    6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
    ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
    239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
    4.93484 y5[t] + 97.0584 y6[t] +
    1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
    ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
    x1[t]^2 +
    y1[t]^2)^2 + (-1.64323 + (-0.685234 +
    x2[t])^2 + (-0.154534 +
    y2[t])^2)^2 + (-0.0383062 + (-x1[t] +
    x2[t])^2 + (-y1[t] +
    y2[t])^2)^2 + (-0.0138516 + (-x2[t] +
    x3[t])^2 + (-y2[t] +
    y3[t])^2)^2 + (-0.783885 + (-x3[t] +
    x4[t])^2 + (-y3[t] +
    y4[t])^2)^2 + (-0.0353049 + (-x4[t] +
    x5[t])^2 + (-y4[t] + y5[t])^2)^2 + (-1.88925 + (-x1[t] +
    x6[t])^2 + (-y1[t] +
    y6[t])^2)^2 + (-0.0228637 + (-x5[t] +
    x6[t])^2 + (-y5[t] + y6[t])^2)^2);

    [Theta]1 = ArcTan[x1[t], y1[t]];
    [Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
    [Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
    [Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
    [Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
    [Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
    [Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

    With[y6Start = 0.15 LenFact,
    eqbr = NMinimize[VPenalty[[1, 1]],
    Flatten[CE] == Table[0, Length[CE]], Pi/2 < [Theta]1 < Pi,
    20*Pi/180 < [Theta]21 < 95*Pi/180, 145*Pi/180 < [Theta]3 < Pi,
    80*Pi/180 < [Theta]5 < 100*Pi/180, 0 < y6[t] < y6Start, q,
    Reals]]
    (*1652.07, x1[t] -> -0.729157, y1[t] -> 0.278358, x2[t] -> -0.573507,
    y2[t] -> 0.397027, x3[t] -> -0.457944, y3[t] -> 0.374765,
    x4[t] -> 0.423225, y4[t] -> 0.460944, x5[t] -> 0.60875,
    y5[t] -> 0.431194, x6[t] -> 0.611298, y6[t] -> 0.582379*)





    share|improve this answer









    $endgroup$












    • $begingroup$
      Thanks Alex. At least the constraints are matching to a reasonable degree. Although I am still not sure about the obtained value of Vtotal to be the global one.
      $endgroup$
      – Soumyajit Roy
      2 days ago










    • $begingroup$
      Here VPenalty[] is a non-linear function, so the min can be local.
      $endgroup$
      – Alex Trounev
      2 days ago















    2












    $begingroup$

    I corrected typos. The code is fast and gives an answer, albeit with messages.



    LenFact = 1.3745/0.31571;
    xC = 0.157392 LenFact; yC = 0.035495 LenFact;

    q = x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t], x5[t],
    y5[t], x6[t],
    y6[t]; CE = -0.609155 + x1[t]^2 +
    y1[t]^2, -0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
    y2[t])^2, -1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
    y2[t])^2, -1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
    y6[t])^2, -0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] +
    y6[t]], -0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
    y4[t])^2, -0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
    y5[t])^2, -0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] +
    y5[t]], -0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
    y6[t])^2, -0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
    y3[t])^2, -ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]];

    VPenalty = 3.90351 +
    1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
    3006.52 (2.92648 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
    1082.47 (2.78921 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
    ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
    6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
    ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
    239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
    4.93484 y5[t] + 97.0584 y6[t] +
    1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
    ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
    x1[t]^2 +
    y1[t]^2)^2 + (-1.64323 + (-0.685234 +
    x2[t])^2 + (-0.154534 +
    y2[t])^2)^2 + (-0.0383062 + (-x1[t] +
    x2[t])^2 + (-y1[t] +
    y2[t])^2)^2 + (-0.0138516 + (-x2[t] +
    x3[t])^2 + (-y2[t] +
    y3[t])^2)^2 + (-0.783885 + (-x3[t] +
    x4[t])^2 + (-y3[t] +
    y4[t])^2)^2 + (-0.0353049 + (-x4[t] +
    x5[t])^2 + (-y4[t] + y5[t])^2)^2 + (-1.88925 + (-x1[t] +
    x6[t])^2 + (-y1[t] +
    y6[t])^2)^2 + (-0.0228637 + (-x5[t] +
    x6[t])^2 + (-y5[t] + y6[t])^2)^2);

    [Theta]1 = ArcTan[x1[t], y1[t]];
    [Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
    [Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
    [Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
    [Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
    [Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
    [Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

    With[y6Start = 0.15 LenFact,
    eqbr = NMinimize[VPenalty[[1, 1]],
    Flatten[CE] == Table[0, Length[CE]], Pi/2 < [Theta]1 < Pi,
    20*Pi/180 < [Theta]21 < 95*Pi/180, 145*Pi/180 < [Theta]3 < Pi,
    80*Pi/180 < [Theta]5 < 100*Pi/180, 0 < y6[t] < y6Start, q,
    Reals]]
    (*1652.07, x1[t] -> -0.729157, y1[t] -> 0.278358, x2[t] -> -0.573507,
    y2[t] -> 0.397027, x3[t] -> -0.457944, y3[t] -> 0.374765,
    x4[t] -> 0.423225, y4[t] -> 0.460944, x5[t] -> 0.60875,
    y5[t] -> 0.431194, x6[t] -> 0.611298, y6[t] -> 0.582379*)





    share|improve this answer









    $endgroup$












    • $begingroup$
      Thanks Alex. At least the constraints are matching to a reasonable degree. Although I am still not sure about the obtained value of Vtotal to be the global one.
      $endgroup$
      – Soumyajit Roy
      2 days ago










    • $begingroup$
      Here VPenalty[] is a non-linear function, so the min can be local.
      $endgroup$
      – Alex Trounev
      2 days ago













    2












    2








    2





    $begingroup$

    I corrected typos. The code is fast and gives an answer, albeit with messages.



    LenFact = 1.3745/0.31571;
    xC = 0.157392 LenFact; yC = 0.035495 LenFact;

    q = x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t], x5[t],
    y5[t], x6[t],
    y6[t]; CE = -0.609155 + x1[t]^2 +
    y1[t]^2, -0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
    y2[t])^2, -1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
    y2[t])^2, -1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
    y6[t])^2, -0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] +
    y6[t]], -0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
    y4[t])^2, -0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
    y5[t])^2, -0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] +
    y5[t]], -0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
    y6[t])^2, -0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
    y3[t])^2, -ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]];

    VPenalty = 3.90351 +
    1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
    3006.52 (2.92648 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
    1082.47 (2.78921 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
    ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
    6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
    ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
    239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
    4.93484 y5[t] + 97.0584 y6[t] +
    1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
    ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
    x1[t]^2 +
    y1[t]^2)^2 + (-1.64323 + (-0.685234 +
    x2[t])^2 + (-0.154534 +
    y2[t])^2)^2 + (-0.0383062 + (-x1[t] +
    x2[t])^2 + (-y1[t] +
    y2[t])^2)^2 + (-0.0138516 + (-x2[t] +
    x3[t])^2 + (-y2[t] +
    y3[t])^2)^2 + (-0.783885 + (-x3[t] +
    x4[t])^2 + (-y3[t] +
    y4[t])^2)^2 + (-0.0353049 + (-x4[t] +
    x5[t])^2 + (-y4[t] + y5[t])^2)^2 + (-1.88925 + (-x1[t] +
    x6[t])^2 + (-y1[t] +
    y6[t])^2)^2 + (-0.0228637 + (-x5[t] +
    x6[t])^2 + (-y5[t] + y6[t])^2)^2);

    [Theta]1 = ArcTan[x1[t], y1[t]];
    [Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
    [Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
    [Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
    [Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
    [Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
    [Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

    With[y6Start = 0.15 LenFact,
    eqbr = NMinimize[VPenalty[[1, 1]],
    Flatten[CE] == Table[0, Length[CE]], Pi/2 < [Theta]1 < Pi,
    20*Pi/180 < [Theta]21 < 95*Pi/180, 145*Pi/180 < [Theta]3 < Pi,
    80*Pi/180 < [Theta]5 < 100*Pi/180, 0 < y6[t] < y6Start, q,
    Reals]]
    (*1652.07, x1[t] -> -0.729157, y1[t] -> 0.278358, x2[t] -> -0.573507,
    y2[t] -> 0.397027, x3[t] -> -0.457944, y3[t] -> 0.374765,
    x4[t] -> 0.423225, y4[t] -> 0.460944, x5[t] -> 0.60875,
    y5[t] -> 0.431194, x6[t] -> 0.611298, y6[t] -> 0.582379*)





    share|improve this answer









    $endgroup$



    I corrected typos. The code is fast and gives an answer, albeit with messages.



    LenFact = 1.3745/0.31571;
    xC = 0.157392 LenFact; yC = 0.035495 LenFact;

    q = x1[t], y1[t], x2[t], y2[t], x3[t], y3[t], x4[t], y4[t], x5[t],
    y5[t], x6[t],
    y6[t]; CE = -0.609155 + x1[t]^2 +
    y1[t]^2, -0.0383062 + (-x1[t] + x2[t])^2 + (-y1[t] +
    y2[t])^2, -1.64323 + (-0.685234 + x2[t])^2 + (-0.154534 +
    y2[t])^2, -1.88925 + (-x1[t] + x6[t])^2 + (-y1[t] +
    y6[t])^2, -0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] +
    y6[t]], -0.783885 + (-x3[t] + x4[t])^2 + (-y3[t] +
    y4[t])^2, -0.0353049 + (-x4[t] + x5[t])^2 + (-y4[t] +
    y5[t])^2, -0.25649 + ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] +
    y5[t]], -0.0228637 + (-x5[t] + x6[t])^2 + (-y5[t] +
    y6[t])^2, -0.0138516 + (-x2[t] + x3[t])^2 + (-y2[t] +
    y3[t])^2, -ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]];

    VPenalty = 3.90351 +
    1.13817*10^6 (2.74102 - 1. ArcTan[x1[t], y1[t]])^2 +
    3006.52 (2.92648 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]])^2 +
    1082.47 (2.78921 -
    1. ArcTan[-0.685234 + x3[t], -0.154534 + y3[t]] +
    ArcTan[-1. x3[t] + x4[t], -1. y3[t] + y4[t]])^2 +
    6825.76 (2.48452 - 1. ArcTan[x1[t], y1[t]] +
    ArcTan[-1. x1[t] + x6[t], -1. y1[t] + y6[t]])^2 +
    239.418 y1[t] + 29.1166 y2[t] + 6.00899 y3[t] + 7.28423 y4[t] +
    4.93484 y5[t] + 97.0584 y6[t] +
    1.90484*10^8 ((-ArcTan[0.685234 - x2[t], 0.154534 - y2[t]] +
    ArcTan[-x2[t] + x3[t], -y2[t] + y3[t]])^2 + (-0.25649 +
    ArcTan[-x3[t] + x4[t], -y3[t] + y4[t]] -
    ArcTan[-x4[t] + x5[t], -y4[t] + y5[t]])^2 + (-0.428366 +
    ArcTan[-x1[t] + x2[t], -y1[t] + y2[t]] -
    ArcTan[-x1[t] + x6[t], -y1[t] + y6[t]])^2 + (-0.609155 +
    x1[t]^2 +
    y1[t]^2)^2 + (-1.64323 + (-0.685234 +
    x2[t])^2 + (-0.154534 +
    y2[t])^2)^2 + (-0.0383062 + (-x1[t] +
    x2[t])^2 + (-y1[t] +
    y2[t])^2)^2 + (-0.0138516 + (-x2[t] +
    x3[t])^2 + (-y2[t] +
    y3[t])^2)^2 + (-0.783885 + (-x3[t] +
    x4[t])^2 + (-y3[t] +
    y4[t])^2)^2 + (-0.0353049 + (-x4[t] +
    x5[t])^2 + (-y4[t] + y5[t])^2)^2 + (-1.88925 + (-x1[t] +
    x6[t])^2 + (-y1[t] +
    y6[t])^2)^2 + (-0.0228637 + (-x5[t] +
    x6[t])^2 + (-y5[t] + y6[t])^2)^2);

    [Theta]1 = ArcTan[x1[t], y1[t]];
    [Theta]21 = ArcTan[x2[t] - x1[t], y2[t] - y1[t]];
    [Theta]3 = ArcTan[x3[t] - xC, y3[t] - yC];
    [Theta]22 = ArcTan[x6[t] - x1[t], y6[t] - y1[t]];
    [Theta]41 = ArcTan[x4[t] - x3[t], y4[t] - y3[t]];
    [Theta]42 = ArcTan[x5[t] - x4[t], y5[t] - y4[t]];
    [Theta]5 = ArcTan[x6[t] - x5[t], y6[t] - y5[t]];

    With[y6Start = 0.15 LenFact,
    eqbr = NMinimize[VPenalty[[1, 1]],
    Flatten[CE] == Table[0, Length[CE]], Pi/2 < [Theta]1 < Pi,
    20*Pi/180 < [Theta]21 < 95*Pi/180, 145*Pi/180 < [Theta]3 < Pi,
    80*Pi/180 < [Theta]5 < 100*Pi/180, 0 < y6[t] < y6Start, q,
    Reals]]
    (*1652.07, x1[t] -> -0.729157, y1[t] -> 0.278358, x2[t] -> -0.573507,
    y2[t] -> 0.397027, x3[t] -> -0.457944, y3[t] -> 0.374765,
    x4[t] -> 0.423225, y4[t] -> 0.460944, x5[t] -> 0.60875,
    y5[t] -> 0.431194, x6[t] -> 0.611298, y6[t] -> 0.582379*)






    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 2 days ago









    Alex TrounevAlex Trounev

    7,9031521




    7,9031521











    • $begingroup$
      Thanks Alex. At least the constraints are matching to a reasonable degree. Although I am still not sure about the obtained value of Vtotal to be the global one.
      $endgroup$
      – Soumyajit Roy
      2 days ago










    • $begingroup$
      Here VPenalty[] is a non-linear function, so the min can be local.
      $endgroup$
      – Alex Trounev
      2 days ago
















    • $begingroup$
      Thanks Alex. At least the constraints are matching to a reasonable degree. Although I am still not sure about the obtained value of Vtotal to be the global one.
      $endgroup$
      – Soumyajit Roy
      2 days ago










    • $begingroup$
      Here VPenalty[] is a non-linear function, so the min can be local.
      $endgroup$
      – Alex Trounev
      2 days ago















    $begingroup$
    Thanks Alex. At least the constraints are matching to a reasonable degree. Although I am still not sure about the obtained value of Vtotal to be the global one.
    $endgroup$
    – Soumyajit Roy
    2 days ago




    $begingroup$
    Thanks Alex. At least the constraints are matching to a reasonable degree. Although I am still not sure about the obtained value of Vtotal to be the global one.
    $endgroup$
    – Soumyajit Roy
    2 days ago












    $begingroup$
    Here VPenalty[] is a non-linear function, so the min can be local.
    $endgroup$
    – Alex Trounev
    2 days ago




    $begingroup$
    Here VPenalty[] is a non-linear function, so the min can be local.
    $endgroup$
    – Alex Trounev
    2 days ago











    2












    $begingroup$

    The method "RandomSearch" usually gives a result reasonably quickly (other than using FindMinimum). It's less robust, though, than the other methods. The following takes about 30 sec.



    eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0, 
    90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °,
    145 ° < θ3 < 180 °, 80 ° < θ5 < 100 °, 0 < y6[t] < y6Start, q,
    Method -> "RandomSearch"]



    NMinimize::incst: NMinimize was unable to generate any initial points satisfying the inequality constraints...




    (*
    161.292, x1[t] -> -0.718754, y1[t] -> 0.30422, x2[t] -> -0.567146,
    y2[t] -> 0.427983, x3[t] -> -0.452162, y3[t] -> 0.402877,
    x4[t] -> 0.424915, y4[t] -> 0.523793, x5[t] -> 0.611471,
    y5[t] -> 0.501395, x6[t] -> 0.610863, y6[t] -> 0.652602
    *)


    While NMinimize did not find good starting points, it found a solution within the constraints:



    90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °, 145 ° < θ3 < 180 °, 
    80 ° < θ5 < 100 °, 0 < y6[t] < y6Start /.
    Last@eqbr
    (* True, True, True, True, True *)





    share|improve this answer









    $endgroup$

















      2












      $begingroup$

      The method "RandomSearch" usually gives a result reasonably quickly (other than using FindMinimum). It's less robust, though, than the other methods. The following takes about 30 sec.



      eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0, 
      90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °,
      145 ° < θ3 < 180 °, 80 ° < θ5 < 100 °, 0 < y6[t] < y6Start, q,
      Method -> "RandomSearch"]



      NMinimize::incst: NMinimize was unable to generate any initial points satisfying the inequality constraints...




      (*
      161.292, x1[t] -> -0.718754, y1[t] -> 0.30422, x2[t] -> -0.567146,
      y2[t] -> 0.427983, x3[t] -> -0.452162, y3[t] -> 0.402877,
      x4[t] -> 0.424915, y4[t] -> 0.523793, x5[t] -> 0.611471,
      y5[t] -> 0.501395, x6[t] -> 0.610863, y6[t] -> 0.652602
      *)


      While NMinimize did not find good starting points, it found a solution within the constraints:



      90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °, 145 ° < θ3 < 180 °, 
      80 ° < θ5 < 100 °, 0 < y6[t] < y6Start /.
      Last@eqbr
      (* True, True, True, True, True *)





      share|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        The method "RandomSearch" usually gives a result reasonably quickly (other than using FindMinimum). It's less robust, though, than the other methods. The following takes about 30 sec.



        eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0, 
        90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °,
        145 ° < θ3 < 180 °, 80 ° < θ5 < 100 °, 0 < y6[t] < y6Start, q,
        Method -> "RandomSearch"]



        NMinimize::incst: NMinimize was unable to generate any initial points satisfying the inequality constraints...




        (*
        161.292, x1[t] -> -0.718754, y1[t] -> 0.30422, x2[t] -> -0.567146,
        y2[t] -> 0.427983, x3[t] -> -0.452162, y3[t] -> 0.402877,
        x4[t] -> 0.424915, y4[t] -> 0.523793, x5[t] -> 0.611471,
        y5[t] -> 0.501395, x6[t] -> 0.610863, y6[t] -> 0.652602
        *)


        While NMinimize did not find good starting points, it found a solution within the constraints:



        90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °, 145 ° < θ3 < 180 °, 
        80 ° < θ5 < 100 °, 0 < y6[t] < y6Start /.
        Last@eqbr
        (* True, True, True, True, True *)





        share|improve this answer









        $endgroup$



        The method "RandomSearch" usually gives a result reasonably quickly (other than using FindMinimum). It's less robust, though, than the other methods. The following takes about 30 sec.



        eqbr = NMinimize[VPenalty[[1, 1]], Flatten[CE] == 0, 
        90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °,
        145 ° < θ3 < 180 °, 80 ° < θ5 < 100 °, 0 < y6[t] < y6Start, q,
        Method -> "RandomSearch"]



        NMinimize::incst: NMinimize was unable to generate any initial points satisfying the inequality constraints...




        (*
        161.292, x1[t] -> -0.718754, y1[t] -> 0.30422, x2[t] -> -0.567146,
        y2[t] -> 0.427983, x3[t] -> -0.452162, y3[t] -> 0.402877,
        x4[t] -> 0.424915, y4[t] -> 0.523793, x5[t] -> 0.611471,
        y5[t] -> 0.501395, x6[t] -> 0.610863, y6[t] -> 0.652602
        *)


        While NMinimize did not find good starting points, it found a solution within the constraints:



        90 ° < θ1 < 180 °, 20 ° < θ21 < 95 °, 145 ° < θ3 < 180 °, 
        80 ° < θ5 < 100 °, 0 < y6[t] < y6Start /.
        Last@eqbr
        (* True, True, True, True, True *)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 2 days ago









        Michael E2Michael E2

        149k12200480




        149k12200480



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193379%2fnumerical-minimization-of-large-expression%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?