Why I get the ValueErrorCorrelations - Get values in the way we wantHow to get the mu+0.1sigma from a normal distribution?XGBClassifier error! ValueError: feature_names mismatch:Given paper name get the abstractValueError when doing validation with random forestsWhy is the cost increasing in the linear regression method?Why is my U-matrix visually not separating the classes?VAR model ValueError: x already contains a constantValueError: Numpy arrays that you are passing to your model is not the size the model expectedwhy tsne plot can not show all the labels
Animal R'aim of the midrash
Recursively updating the MLE as new observations stream in
Do native speakers use "ultima" and "proxima" frequently in spoken English?
Print last inputted byte
How to test the sharpness of a knife?
What are the consequences of changing the number of hours in a day?
PTIJ: If Haman would have fallen with no one around to hear him fall, would that still have made a sound?
Placing object on uneven surface
Exit shell with shortcut (not typing exit) that closes session properly
Would mining huge amounts of resources on the Moon change its orbit?
Does the Shadow Magic sorcerer's Eyes of the Dark feature work on all Darkness spells or just his/her own?
How do you justify more code being written by following clean code practices?
Unfrosted light bulb
How to read string as hex number in bash?
Why does Surtur say that Thor is Asgard's doom?
Why doesn't the fusion process of the sun speed up?
Error in master's thesis, I do not know what to do
Why is "la Gestapo" feminine?
What is it called when someone votes for an option that's not their first choice?
Can other pieces capture a threatening piece and prevent a checkmate?
Why is the intercept typed in as a 1 in stats packages (R, python)
Determine voltage drop over 10G resistors with cheap multimeter
How to balance a monster modification (zombie)?
What happens when the centripetal force is equal and opposite to the centrifugal force?
Why I get the ValueError
Correlations - Get values in the way we wantHow to get the mu+0.1sigma from a normal distribution?XGBClassifier error! ValueError: feature_names mismatch:Given paper name get the abstractValueError when doing validation with random forestsWhy is the cost increasing in the linear regression method?Why is my U-matrix visually not separating the classes?VAR model ValueError: x already contains a constantValueError: Numpy arrays that you are passing to your model is not the size the model expectedwhy tsne plot can not show all the labels
$begingroup$
May I know why I get the error message -
line 49, in _update_weights
self.w_[1:]= self.eta*xi.dot(error)
Error:
ValueError: shapes (1,2) and (1,) not aligned: 2 (dim 1) != 1 (dim 0)
Code:
import numpy as np
class AdalineSGD (object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None, batch=10):
self.batch=100/batch
self.eta=eta
self.n_iter=n_iter
self.w_initialized=False
self.shuffle=shuffle
self.random_state=random_state
def fit (self,X, y):
self._initialize_weights(X.shape[1])
self.cost_=[]
for i in range(self.n_iter):
if self.shuffle:
X, y=self._shuffle(X,y)
cost=[]
mini_X=np.array_split(X,self.batch)
mini_y=np.array_split(y,self.batch)
for xi, target in zip (mini_X, mini_y):
cost.append(self._update_weights(xi,target))
avg_cost=sum(cost)/len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
if not self.w_initialized:
self._inintialize_weights(X.shape[1])
if y.ravel().shape[0]>1:
for xi, target in zip (X, y):
self._update_weights(X,y)
else:
self._update_weights(X,y)
return self
def _shuffle(self, X,y):
r=self.rgen.permutation(len(y))
return X[r],y[r]
def _initialize_weights(self, m):
self.rgen=np.random.RandomState(self.random_state)
self.w_=self.rgen.normal(loc=0.0,scale=0.01,size=1+m)
self.w_initialized=True
def _update_weights(self,xi,target):
output = self.activation(self.net_input(xi))
error = (target - output)
self.w_[1:]= self.eta*xi.dot(error)
self.w_[0] = self.eta*error
cost = 0.5 * error**2
return cost
def net_input(self,X):
return np.dot(X,self.w_[1:])+self.w_[0]
def activation (self,X):
return X
def predict(self,X):
return np.where(self.activation(self.net_input(X))>=0.0,1,-1)
import pandas as pd
df=pd.read_csv('https://archive.ics.uci.edu/ml/''machine-learning-databases/iris/iris.data',header=None)
df.tail()
import matplotlib.pyplot as plt
y=df.iloc[0:100,4].values
y = np.where(y=='Iris-setosa',-1,1)
X=df.iloc[0:100,[0,2]].values
X_std=np.copy(X)
X_std[:,0]=(X[:,0]-X[:,0].mean())/X[:,0].std()
X_std[:,1]=(X[:,1]-X[:,1].mean())/X[:,1].std()
ada1=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=1)
ada2=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=2)
ada3=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=10)
ada1.fit(X_std,y)
ada2.fit(X_std,y)
ada3.fit(X_std,y)
plt.plot(range(1,len(ada1.cost_)+1), ada1.cost_,marker='0',color='blue',label='batch=1')
plt.plot(range(1,len(ada2.cost_)+1), ada2.cost_,marker='0',color='orange',label='batch=2')
plt.plot(range(1,len(ada3.cost_)+1), ada3.cost_,marker='0',color='green',label='batch=10')
plt.title('Mini-batch learnign')
plt.legend(loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Avaerage Cost')
plt.show()**
Please see the link -
enter link description here
python
New contributor
$endgroup$
add a comment |
$begingroup$
May I know why I get the error message -
line 49, in _update_weights
self.w_[1:]= self.eta*xi.dot(error)
Error:
ValueError: shapes (1,2) and (1,) not aligned: 2 (dim 1) != 1 (dim 0)
Code:
import numpy as np
class AdalineSGD (object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None, batch=10):
self.batch=100/batch
self.eta=eta
self.n_iter=n_iter
self.w_initialized=False
self.shuffle=shuffle
self.random_state=random_state
def fit (self,X, y):
self._initialize_weights(X.shape[1])
self.cost_=[]
for i in range(self.n_iter):
if self.shuffle:
X, y=self._shuffle(X,y)
cost=[]
mini_X=np.array_split(X,self.batch)
mini_y=np.array_split(y,self.batch)
for xi, target in zip (mini_X, mini_y):
cost.append(self._update_weights(xi,target))
avg_cost=sum(cost)/len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
if not self.w_initialized:
self._inintialize_weights(X.shape[1])
if y.ravel().shape[0]>1:
for xi, target in zip (X, y):
self._update_weights(X,y)
else:
self._update_weights(X,y)
return self
def _shuffle(self, X,y):
r=self.rgen.permutation(len(y))
return X[r],y[r]
def _initialize_weights(self, m):
self.rgen=np.random.RandomState(self.random_state)
self.w_=self.rgen.normal(loc=0.0,scale=0.01,size=1+m)
self.w_initialized=True
def _update_weights(self,xi,target):
output = self.activation(self.net_input(xi))
error = (target - output)
self.w_[1:]= self.eta*xi.dot(error)
self.w_[0] = self.eta*error
cost = 0.5 * error**2
return cost
def net_input(self,X):
return np.dot(X,self.w_[1:])+self.w_[0]
def activation (self,X):
return X
def predict(self,X):
return np.where(self.activation(self.net_input(X))>=0.0,1,-1)
import pandas as pd
df=pd.read_csv('https://archive.ics.uci.edu/ml/''machine-learning-databases/iris/iris.data',header=None)
df.tail()
import matplotlib.pyplot as plt
y=df.iloc[0:100,4].values
y = np.where(y=='Iris-setosa',-1,1)
X=df.iloc[0:100,[0,2]].values
X_std=np.copy(X)
X_std[:,0]=(X[:,0]-X[:,0].mean())/X[:,0].std()
X_std[:,1]=(X[:,1]-X[:,1].mean())/X[:,1].std()
ada1=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=1)
ada2=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=2)
ada3=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=10)
ada1.fit(X_std,y)
ada2.fit(X_std,y)
ada3.fit(X_std,y)
plt.plot(range(1,len(ada1.cost_)+1), ada1.cost_,marker='0',color='blue',label='batch=1')
plt.plot(range(1,len(ada2.cost_)+1), ada2.cost_,marker='0',color='orange',label='batch=2')
plt.plot(range(1,len(ada3.cost_)+1), ada3.cost_,marker='0',color='green',label='batch=10')
plt.title('Mini-batch learnign')
plt.legend(loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Avaerage Cost')
plt.show()**
Please see the link -
enter link description here
python
New contributor
$endgroup$
$begingroup$
Changingself.w_[1:]= self.eta*xi.dot(error)
Toself.w_[1:]= self.eta*error.dot(xi)
works. But still next lineself.w_[0] = self.eta*error
Tries to put a 1x2 vectorerror
inside a single variableself.w_[0]
!
$endgroup$
– Esmailian
2 days ago
$begingroup$
What is a single variable I can put for - self.w_[0] = self.eta*error
$endgroup$
– vokoyo
2 days ago
add a comment |
$begingroup$
May I know why I get the error message -
line 49, in _update_weights
self.w_[1:]= self.eta*xi.dot(error)
Error:
ValueError: shapes (1,2) and (1,) not aligned: 2 (dim 1) != 1 (dim 0)
Code:
import numpy as np
class AdalineSGD (object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None, batch=10):
self.batch=100/batch
self.eta=eta
self.n_iter=n_iter
self.w_initialized=False
self.shuffle=shuffle
self.random_state=random_state
def fit (self,X, y):
self._initialize_weights(X.shape[1])
self.cost_=[]
for i in range(self.n_iter):
if self.shuffle:
X, y=self._shuffle(X,y)
cost=[]
mini_X=np.array_split(X,self.batch)
mini_y=np.array_split(y,self.batch)
for xi, target in zip (mini_X, mini_y):
cost.append(self._update_weights(xi,target))
avg_cost=sum(cost)/len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
if not self.w_initialized:
self._inintialize_weights(X.shape[1])
if y.ravel().shape[0]>1:
for xi, target in zip (X, y):
self._update_weights(X,y)
else:
self._update_weights(X,y)
return self
def _shuffle(self, X,y):
r=self.rgen.permutation(len(y))
return X[r],y[r]
def _initialize_weights(self, m):
self.rgen=np.random.RandomState(self.random_state)
self.w_=self.rgen.normal(loc=0.0,scale=0.01,size=1+m)
self.w_initialized=True
def _update_weights(self,xi,target):
output = self.activation(self.net_input(xi))
error = (target - output)
self.w_[1:]= self.eta*xi.dot(error)
self.w_[0] = self.eta*error
cost = 0.5 * error**2
return cost
def net_input(self,X):
return np.dot(X,self.w_[1:])+self.w_[0]
def activation (self,X):
return X
def predict(self,X):
return np.where(self.activation(self.net_input(X))>=0.0,1,-1)
import pandas as pd
df=pd.read_csv('https://archive.ics.uci.edu/ml/''machine-learning-databases/iris/iris.data',header=None)
df.tail()
import matplotlib.pyplot as plt
y=df.iloc[0:100,4].values
y = np.where(y=='Iris-setosa',-1,1)
X=df.iloc[0:100,[0,2]].values
X_std=np.copy(X)
X_std[:,0]=(X[:,0]-X[:,0].mean())/X[:,0].std()
X_std[:,1]=(X[:,1]-X[:,1].mean())/X[:,1].std()
ada1=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=1)
ada2=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=2)
ada3=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=10)
ada1.fit(X_std,y)
ada2.fit(X_std,y)
ada3.fit(X_std,y)
plt.plot(range(1,len(ada1.cost_)+1), ada1.cost_,marker='0',color='blue',label='batch=1')
plt.plot(range(1,len(ada2.cost_)+1), ada2.cost_,marker='0',color='orange',label='batch=2')
plt.plot(range(1,len(ada3.cost_)+1), ada3.cost_,marker='0',color='green',label='batch=10')
plt.title('Mini-batch learnign')
plt.legend(loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Avaerage Cost')
plt.show()**
Please see the link -
enter link description here
python
New contributor
$endgroup$
May I know why I get the error message -
line 49, in _update_weights
self.w_[1:]= self.eta*xi.dot(error)
Error:
ValueError: shapes (1,2) and (1,) not aligned: 2 (dim 1) != 1 (dim 0)
Code:
import numpy as np
class AdalineSGD (object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None, batch=10):
self.batch=100/batch
self.eta=eta
self.n_iter=n_iter
self.w_initialized=False
self.shuffle=shuffle
self.random_state=random_state
def fit (self,X, y):
self._initialize_weights(X.shape[1])
self.cost_=[]
for i in range(self.n_iter):
if self.shuffle:
X, y=self._shuffle(X,y)
cost=[]
mini_X=np.array_split(X,self.batch)
mini_y=np.array_split(y,self.batch)
for xi, target in zip (mini_X, mini_y):
cost.append(self._update_weights(xi,target))
avg_cost=sum(cost)/len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
if not self.w_initialized:
self._inintialize_weights(X.shape[1])
if y.ravel().shape[0]>1:
for xi, target in zip (X, y):
self._update_weights(X,y)
else:
self._update_weights(X,y)
return self
def _shuffle(self, X,y):
r=self.rgen.permutation(len(y))
return X[r],y[r]
def _initialize_weights(self, m):
self.rgen=np.random.RandomState(self.random_state)
self.w_=self.rgen.normal(loc=0.0,scale=0.01,size=1+m)
self.w_initialized=True
def _update_weights(self,xi,target):
output = self.activation(self.net_input(xi))
error = (target - output)
self.w_[1:]= self.eta*xi.dot(error)
self.w_[0] = self.eta*error
cost = 0.5 * error**2
return cost
def net_input(self,X):
return np.dot(X,self.w_[1:])+self.w_[0]
def activation (self,X):
return X
def predict(self,X):
return np.where(self.activation(self.net_input(X))>=0.0,1,-1)
import pandas as pd
df=pd.read_csv('https://archive.ics.uci.edu/ml/''machine-learning-databases/iris/iris.data',header=None)
df.tail()
import matplotlib.pyplot as plt
y=df.iloc[0:100,4].values
y = np.where(y=='Iris-setosa',-1,1)
X=df.iloc[0:100,[0,2]].values
X_std=np.copy(X)
X_std[:,0]=(X[:,0]-X[:,0].mean())/X[:,0].std()
X_std[:,1]=(X[:,1]-X[:,1].mean())/X[:,1].std()
ada1=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=1)
ada2=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=2)
ada3=AdalineSGD(n_iter=15,eta=0.01, random_state=1, batch=10)
ada1.fit(X_std,y)
ada2.fit(X_std,y)
ada3.fit(X_std,y)
plt.plot(range(1,len(ada1.cost_)+1), ada1.cost_,marker='0',color='blue',label='batch=1')
plt.plot(range(1,len(ada2.cost_)+1), ada2.cost_,marker='0',color='orange',label='batch=2')
plt.plot(range(1,len(ada3.cost_)+1), ada3.cost_,marker='0',color='green',label='batch=10')
plt.title('Mini-batch learnign')
plt.legend(loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Avaerage Cost')
plt.show()**
Please see the link -
enter link description here
python
python
New contributor
New contributor
edited 2 days ago
ebrahimi
74621021
74621021
New contributor
asked 2 days ago
vokoyovokoyo
43
43
New contributor
New contributor
$begingroup$
Changingself.w_[1:]= self.eta*xi.dot(error)
Toself.w_[1:]= self.eta*error.dot(xi)
works. But still next lineself.w_[0] = self.eta*error
Tries to put a 1x2 vectorerror
inside a single variableself.w_[0]
!
$endgroup$
– Esmailian
2 days ago
$begingroup$
What is a single variable I can put for - self.w_[0] = self.eta*error
$endgroup$
– vokoyo
2 days ago
add a comment |
$begingroup$
Changingself.w_[1:]= self.eta*xi.dot(error)
Toself.w_[1:]= self.eta*error.dot(xi)
works. But still next lineself.w_[0] = self.eta*error
Tries to put a 1x2 vectorerror
inside a single variableself.w_[0]
!
$endgroup$
– Esmailian
2 days ago
$begingroup$
What is a single variable I can put for - self.w_[0] = self.eta*error
$endgroup$
– vokoyo
2 days ago
$begingroup$
Changing
self.w_[1:]= self.eta*xi.dot(error)
To self.w_[1:]= self.eta*error.dot(xi)
works. But still next line self.w_[0] = self.eta*error
Tries to put a 1x2 vector error
inside a single variable self.w_[0]
!$endgroup$
– Esmailian
2 days ago
$begingroup$
Changing
self.w_[1:]= self.eta*xi.dot(error)
To self.w_[1:]= self.eta*error.dot(xi)
works. But still next line self.w_[0] = self.eta*error
Tries to put a 1x2 vector error
inside a single variable self.w_[0]
!$endgroup$
– Esmailian
2 days ago
$begingroup$
What is a single variable I can put for - self.w_[0] = self.eta*error
$endgroup$
– vokoyo
2 days ago
$begingroup$
What is a single variable I can put for - self.w_[0] = self.eta*error
$endgroup$
– vokoyo
2 days ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47431%2fwhy-i-get-the-valueerror%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
vokoyo is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47431%2fwhy-i-get-the-valueerror%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Changing
self.w_[1:]= self.eta*xi.dot(error)
Toself.w_[1:]= self.eta*error.dot(xi)
works. But still next lineself.w_[0] = self.eta*error
Tries to put a 1x2 vectorerror
inside a single variableself.w_[0]
!$endgroup$
– Esmailian
2 days ago
$begingroup$
What is a single variable I can put for - self.w_[0] = self.eta*error
$endgroup$
– vokoyo
2 days ago