Understanding minimizing cost correctlyUnderstanding Locally Weighted Linear RegressionUnderstanding Logistic Regression Cost functionCost function for Ordinal Regression using neural networksCustom c++ LSTM slows down at 0.36 cost is usual?Policy Gradient Methods - ScoreFunction & Log(policy)How to Define a Cost Fucntion?Logistic regression cost functionCost function in linear regressionML / Multivariable cost minimization problems / approach summary?Loss function minimizing by pushing precision and recall to 0

How can an organ that provides biological immortality be unable to regenerate?

1 John in Luther’s Bibel

Why is the intercept typed in as a 1 in stats packages (R, python)

When should a starting writer get his own webpage?

Is this Pascal's Matrix?

Error in master's thesis, I do not know what to do

Is it okay for a cleric of life to use spells like Animate Dead and/or Contagion?

Friend wants my recommendation but I don't want to give it to him

Recursively updating the MLE as new observations stream in

The multiplication of list of matrices

Turning a hard to access nut?

Parts of mini page are not placed properly

Have the tides ever turned twice on any open problem?

Exposing a company lying about themselves in a tightly knit industry (videogames) : Is my career at risk on the long run?

Output visual diagram of picture

How do you justify more code being written by following clean code practices?

How to balance a monster modification (zombie)?

PTIJ: Which Dr. Seuss books should one obtain?

Exit shell with shortcut (not typing exit) that closes session properly

How to test the sharpness of a knife?

Why is this tree refusing to shed its dead leaves?

Do native speakers use "ultima" and "proxima" frequently in spoken English?

Should a narrator ever describe things based on a characters view instead of fact?

When did hardware antialiasing start being available?



Understanding minimizing cost correctly


Understanding Locally Weighted Linear RegressionUnderstanding Logistic Regression Cost functionCost function for Ordinal Regression using neural networksCustom c++ LSTM slows down at 0.36 cost is usual?Policy Gradient Methods - ScoreFunction & Log(policy)How to Define a Cost Fucntion?Logistic regression cost functionCost function in linear regressionML / Multivariable cost minimization problems / approach summary?Loss function minimizing by pushing precision and recall to 0













2












$begingroup$


I cannot wrap my head around this simple concept.



Suppose we have a linear regression, and there is a single parameter theta to be optimized (for simplicity purposes):



$h(x) = theta cdot x$



The error cost function could be defined as $J(theta) = frac1m cdot sum (h(x) - y(x)) ^ 2$, for each $x$.



Then, theta would be updated as:



$theta = theta - alphacdot frac1m cdot sum (h(x) - y(x)) cdot x$, for each $x$.



From my understanding the multiplier after the alpha term is the derivative of the error cost function $J$. This term tells us the direction to head in, in order to arrive at the minimum making a small step at a time. I understand the concept of "hill climbing" correctly, at least I think.



Here is where I don't seem to wrap my head around:



If the form of the error function is known (like in our case: we could visually plot the function if we take enough values of theta and plug them in the model), why can't we take the first derivative and set it to zero (partial derivative if the function has multiple thetas). This way we would have all the minimums of the function. Then with the second derivative, we could determine whether it's a min or a max.



I've seen this done in calculus for simple functions like $y = x^2 + 5x + 2$ (may years ago, maybe I am wrong), so what is stopping us from doing the same thing here?



Sorry for asking such a silly question.



Thank you.










share|improve this question









New contributor




zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    2












    $begingroup$


    I cannot wrap my head around this simple concept.



    Suppose we have a linear regression, and there is a single parameter theta to be optimized (for simplicity purposes):



    $h(x) = theta cdot x$



    The error cost function could be defined as $J(theta) = frac1m cdot sum (h(x) - y(x)) ^ 2$, for each $x$.



    Then, theta would be updated as:



    $theta = theta - alphacdot frac1m cdot sum (h(x) - y(x)) cdot x$, for each $x$.



    From my understanding the multiplier after the alpha term is the derivative of the error cost function $J$. This term tells us the direction to head in, in order to arrive at the minimum making a small step at a time. I understand the concept of "hill climbing" correctly, at least I think.



    Here is where I don't seem to wrap my head around:



    If the form of the error function is known (like in our case: we could visually plot the function if we take enough values of theta and plug them in the model), why can't we take the first derivative and set it to zero (partial derivative if the function has multiple thetas). This way we would have all the minimums of the function. Then with the second derivative, we could determine whether it's a min or a max.



    I've seen this done in calculus for simple functions like $y = x^2 + 5x + 2$ (may years ago, maybe I am wrong), so what is stopping us from doing the same thing here?



    Sorry for asking such a silly question.



    Thank you.










    share|improve this question









    New contributor




    zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2





      $begingroup$


      I cannot wrap my head around this simple concept.



      Suppose we have a linear regression, and there is a single parameter theta to be optimized (for simplicity purposes):



      $h(x) = theta cdot x$



      The error cost function could be defined as $J(theta) = frac1m cdot sum (h(x) - y(x)) ^ 2$, for each $x$.



      Then, theta would be updated as:



      $theta = theta - alphacdot frac1m cdot sum (h(x) - y(x)) cdot x$, for each $x$.



      From my understanding the multiplier after the alpha term is the derivative of the error cost function $J$. This term tells us the direction to head in, in order to arrive at the minimum making a small step at a time. I understand the concept of "hill climbing" correctly, at least I think.



      Here is where I don't seem to wrap my head around:



      If the form of the error function is known (like in our case: we could visually plot the function if we take enough values of theta and plug them in the model), why can't we take the first derivative and set it to zero (partial derivative if the function has multiple thetas). This way we would have all the minimums of the function. Then with the second derivative, we could determine whether it's a min or a max.



      I've seen this done in calculus for simple functions like $y = x^2 + 5x + 2$ (may years ago, maybe I am wrong), so what is stopping us from doing the same thing here?



      Sorry for asking such a silly question.



      Thank you.










      share|improve this question









      New contributor




      zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I cannot wrap my head around this simple concept.



      Suppose we have a linear regression, and there is a single parameter theta to be optimized (for simplicity purposes):



      $h(x) = theta cdot x$



      The error cost function could be defined as $J(theta) = frac1m cdot sum (h(x) - y(x)) ^ 2$, for each $x$.



      Then, theta would be updated as:



      $theta = theta - alphacdot frac1m cdot sum (h(x) - y(x)) cdot x$, for each $x$.



      From my understanding the multiplier after the alpha term is the derivative of the error cost function $J$. This term tells us the direction to head in, in order to arrive at the minimum making a small step at a time. I understand the concept of "hill climbing" correctly, at least I think.



      Here is where I don't seem to wrap my head around:



      If the form of the error function is known (like in our case: we could visually plot the function if we take enough values of theta and plug them in the model), why can't we take the first derivative and set it to zero (partial derivative if the function has multiple thetas). This way we would have all the minimums of the function. Then with the second derivative, we could determine whether it's a min or a max.



      I've seen this done in calculus for simple functions like $y = x^2 + 5x + 2$ (may years ago, maybe I am wrong), so what is stopping us from doing the same thing here?



      Sorry for asking such a silly question.



      Thank you.







      linear-regression cost-function






      share|improve this question









      New contributor




      zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 2 days ago









      Siong Thye Goh

      1,332419




      1,332419






      New contributor




      zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 days ago









      zafirzaryazafirzarya

      132




      132




      New contributor




      zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      zafirzarya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Consider differentiating this $$nabla_theta|Xtheta -y|^2=2X^T(Xtheta -y)=0$$



          Hence solving this, would give us $$X^TXtheta =X^Ty$$



          Solving this would give us the optimal solution theoretically. However, numerical stability is an issue and also don't forget computational complexity. The complexity to solve a linear system is cubic.



          Also, sometimes, we do not even know even have a closed form, a gradient based approach can be more applicable.






          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Thank you for replying. However, I am not that mathematically literate to understand your answer. Is there a simpler answer?
            $endgroup$
            – zafirzarya
            2 days ago










          • $begingroup$
            I found an answer in MSE to illustrate why computing $X^TX$ is bad. Most approaches that aim at directly solving the normal equation is more expensive than a gradient based approach. Also such gradient based approach have been adapted to a sampling based approach as well known as stochastic gradient descent that can handle very big data.
            $endgroup$
            – Siong Thye Goh
            2 days ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          zafirzarya is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47466%2funderstanding-minimizing-cost-correctly%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Consider differentiating this $$nabla_theta|Xtheta -y|^2=2X^T(Xtheta -y)=0$$



          Hence solving this, would give us $$X^TXtheta =X^Ty$$



          Solving this would give us the optimal solution theoretically. However, numerical stability is an issue and also don't forget computational complexity. The complexity to solve a linear system is cubic.



          Also, sometimes, we do not even know even have a closed form, a gradient based approach can be more applicable.






          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Thank you for replying. However, I am not that mathematically literate to understand your answer. Is there a simpler answer?
            $endgroup$
            – zafirzarya
            2 days ago










          • $begingroup$
            I found an answer in MSE to illustrate why computing $X^TX$ is bad. Most approaches that aim at directly solving the normal equation is more expensive than a gradient based approach. Also such gradient based approach have been adapted to a sampling based approach as well known as stochastic gradient descent that can handle very big data.
            $endgroup$
            – Siong Thye Goh
            2 days ago















          2












          $begingroup$

          Consider differentiating this $$nabla_theta|Xtheta -y|^2=2X^T(Xtheta -y)=0$$



          Hence solving this, would give us $$X^TXtheta =X^Ty$$



          Solving this would give us the optimal solution theoretically. However, numerical stability is an issue and also don't forget computational complexity. The complexity to solve a linear system is cubic.



          Also, sometimes, we do not even know even have a closed form, a gradient based approach can be more applicable.






          share|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Thank you for replying. However, I am not that mathematically literate to understand your answer. Is there a simpler answer?
            $endgroup$
            – zafirzarya
            2 days ago










          • $begingroup$
            I found an answer in MSE to illustrate why computing $X^TX$ is bad. Most approaches that aim at directly solving the normal equation is more expensive than a gradient based approach. Also such gradient based approach have been adapted to a sampling based approach as well known as stochastic gradient descent that can handle very big data.
            $endgroup$
            – Siong Thye Goh
            2 days ago













          2












          2








          2





          $begingroup$

          Consider differentiating this $$nabla_theta|Xtheta -y|^2=2X^T(Xtheta -y)=0$$



          Hence solving this, would give us $$X^TXtheta =X^Ty$$



          Solving this would give us the optimal solution theoretically. However, numerical stability is an issue and also don't forget computational complexity. The complexity to solve a linear system is cubic.



          Also, sometimes, we do not even know even have a closed form, a gradient based approach can be more applicable.






          share|improve this answer









          $endgroup$



          Consider differentiating this $$nabla_theta|Xtheta -y|^2=2X^T(Xtheta -y)=0$$



          Hence solving this, would give us $$X^TXtheta =X^Ty$$



          Solving this would give us the optimal solution theoretically. However, numerical stability is an issue and also don't forget computational complexity. The complexity to solve a linear system is cubic.



          Also, sometimes, we do not even know even have a closed form, a gradient based approach can be more applicable.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 2 days ago









          Siong Thye GohSiong Thye Goh

          1,332419




          1,332419







          • 1




            $begingroup$
            Thank you for replying. However, I am not that mathematically literate to understand your answer. Is there a simpler answer?
            $endgroup$
            – zafirzarya
            2 days ago










          • $begingroup$
            I found an answer in MSE to illustrate why computing $X^TX$ is bad. Most approaches that aim at directly solving the normal equation is more expensive than a gradient based approach. Also such gradient based approach have been adapted to a sampling based approach as well known as stochastic gradient descent that can handle very big data.
            $endgroup$
            – Siong Thye Goh
            2 days ago












          • 1




            $begingroup$
            Thank you for replying. However, I am not that mathematically literate to understand your answer. Is there a simpler answer?
            $endgroup$
            – zafirzarya
            2 days ago










          • $begingroup$
            I found an answer in MSE to illustrate why computing $X^TX$ is bad. Most approaches that aim at directly solving the normal equation is more expensive than a gradient based approach. Also such gradient based approach have been adapted to a sampling based approach as well known as stochastic gradient descent that can handle very big data.
            $endgroup$
            – Siong Thye Goh
            2 days ago







          1




          1




          $begingroup$
          Thank you for replying. However, I am not that mathematically literate to understand your answer. Is there a simpler answer?
          $endgroup$
          – zafirzarya
          2 days ago




          $begingroup$
          Thank you for replying. However, I am not that mathematically literate to understand your answer. Is there a simpler answer?
          $endgroup$
          – zafirzarya
          2 days ago












          $begingroup$
          I found an answer in MSE to illustrate why computing $X^TX$ is bad. Most approaches that aim at directly solving the normal equation is more expensive than a gradient based approach. Also such gradient based approach have been adapted to a sampling based approach as well known as stochastic gradient descent that can handle very big data.
          $endgroup$
          – Siong Thye Goh
          2 days ago




          $begingroup$
          I found an answer in MSE to illustrate why computing $X^TX$ is bad. Most approaches that aim at directly solving the normal equation is more expensive than a gradient based approach. Also such gradient based approach have been adapted to a sampling based approach as well known as stochastic gradient descent that can handle very big data.
          $endgroup$
          – Siong Thye Goh
          2 days ago










          zafirzarya is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          zafirzarya is a new contributor. Be nice, and check out our Code of Conduct.












          zafirzarya is a new contributor. Be nice, and check out our Code of Conduct.











          zafirzarya is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47466%2funderstanding-minimizing-cost-correctly%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?