A question on realizable sample complexity The 2019 Stack Overflow Developer Survey Results Are InGlobal vs. local bias-variance tradeoffGeneralization Error DefinitionSemi-gradient TD(0) Choosing an ActionIs cross-entropy a good cost function if I'm interested in the probabilities of a sample belonging to a certain class?Maximum Entropy modelling - likelihood equationPerceptron - Convergence proofAnalysing Regret for Multi Armed BanditsIntuition behind Occam's Learner Algorithm using VC-DimensionQ learning transition matrix troublePAC Learnability - Notation

What is the meaning of Triage in Cybersec world?

Command for nulifying spaces

Why are there uneven bright areas in this photo of black hole?

The phrase "to the numbers born"?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Why couldn't they take pictures of a closer black hole?

Why isn't airport relocation done gradually?

Is it possible for absolutely everyone to attain enlightenment?

Is bread bad for ducks?

Ubuntu Server install with full GUI

What is the accessibility of a package's `Private` context variables?

Button changing its text & action. Good or terrible?

Is "plugging out" electronic devices an American expression?

How much of the clove should I use when using big garlic heads?

How can I refresh a custom data tab in the contact summary?

Output the Arecibo Message

How can I define good in a religion that claims no moral authority?

Why doesn't shell automatically fix "useless use of cat"?

Why isn't the circumferential light around the M87 black hole's event horizon symmetric?

Is there a better way to do an empty check in Java?

Using xargs with pdftk

Can a flute soloist sit?

Sums of normal random variables

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?



A question on realizable sample complexity



The 2019 Stack Overflow Developer Survey Results Are InGlobal vs. local bias-variance tradeoffGeneralization Error DefinitionSemi-gradient TD(0) Choosing an ActionIs cross-entropy a good cost function if I'm interested in the probabilities of a sample belonging to a certain class?Maximum Entropy modelling - likelihood equationPerceptron - Convergence proofAnalysing Regret for Multi Armed BanditsIntuition behind Occam's Learner Algorithm using VC-DimensionQ learning transition matrix troublePAC Learnability - Notation










1












$begingroup$


I came across the following exercise, and I just can't seem to crack it:




Let $l$ be some loss function such that $l leq 1$. Let $H$ be some hypothesis class, and let $A$ be a learning algorithm. show that:



$m^textstat, r_H (epsilon) = Oleft(m^textstat, r_H (epsilon/2, 1/2)cdot log(1/epsilon) + fraclog(1/epsilon)epsilon^2right)$




Where $m^textstat, r_H (epsilon)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
$$mathbbE_S sim D^mleft[ l_D(A(S)) right]leq epsilon$$



And where $m^textstat, r_H (epsilon, delta)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
$$P_S sim D^mleft( l_D(A(S)) geq epsilon right) leq delta$$



Thanks a lot in advance!










share|improve this question











$endgroup$
















    1












    $begingroup$


    I came across the following exercise, and I just can't seem to crack it:




    Let $l$ be some loss function such that $l leq 1$. Let $H$ be some hypothesis class, and let $A$ be a learning algorithm. show that:



    $m^textstat, r_H (epsilon) = Oleft(m^textstat, r_H (epsilon/2, 1/2)cdot log(1/epsilon) + fraclog(1/epsilon)epsilon^2right)$




    Where $m^textstat, r_H (epsilon)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
    $$mathbbE_S sim D^mleft[ l_D(A(S)) right]leq epsilon$$



    And where $m^textstat, r_H (epsilon, delta)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
    $$P_S sim D^mleft( l_D(A(S)) geq epsilon right) leq delta$$



    Thanks a lot in advance!










    share|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      I came across the following exercise, and I just can't seem to crack it:




      Let $l$ be some loss function such that $l leq 1$. Let $H$ be some hypothesis class, and let $A$ be a learning algorithm. show that:



      $m^textstat, r_H (epsilon) = Oleft(m^textstat, r_H (epsilon/2, 1/2)cdot log(1/epsilon) + fraclog(1/epsilon)epsilon^2right)$




      Where $m^textstat, r_H (epsilon)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
      $$mathbbE_S sim D^mleft[ l_D(A(S)) right]leq epsilon$$



      And where $m^textstat, r_H (epsilon, delta)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
      $$P_S sim D^mleft( l_D(A(S)) geq epsilon right) leq delta$$



      Thanks a lot in advance!










      share|improve this question











      $endgroup$




      I came across the following exercise, and I just can't seem to crack it:




      Let $l$ be some loss function such that $l leq 1$. Let $H$ be some hypothesis class, and let $A$ be a learning algorithm. show that:



      $m^textstat, r_H (epsilon) = Oleft(m^textstat, r_H (epsilon/2, 1/2)cdot log(1/epsilon) + fraclog(1/epsilon)epsilon^2right)$




      Where $m^textstat, r_H (epsilon)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
      $$mathbbE_S sim D^mleft[ l_D(A(S)) right]leq epsilon$$



      And where $m^textstat, r_H (epsilon, delta)$ is the minimal number $m$ such that for any realizable distribution over training examples $D$ we have that:
      $$P_S sim D^mleft( l_D(A(S)) geq epsilon right) leq delta$$



      Thanks a lot in advance!







      machine-learning theory vc-theory pac-learning






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 30 at 15:07









      Esmailian

      3,001320




      3,001320










      asked Mar 4 at 12:23









      Nadav SchweigerNadav Schweiger

      61




      61




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          We want to prove:



          If H is PAC learnable, then $forall epsilon, exists C, forall m geq m_2:=Clog(1/epsilon)(m_1+1/epsilon^2), E[L] leq epsilon mbox (a)$

          where $m_1:=m(epsilon/2,1/2)$



          Since $L leq 1$, we have $E[L] leq 1$. So proof is trivial for $epsilon geq 1$. Let $epsilon in (0, 1)$.



          Find an equivalence for $(a)$:



          $beginalign*
          E[L] &= int_l geq epsilon / 2ldP + int_l< epsilon / 2 ldP leq int_l geq epsilon / 2dP + int_l< epsilon / 2 fracepsilon2 dP\
          &= P(L geq epsilon/2) + fracepsilon2 P(L <epsilon/2)\
          &= (1 - epsilon/2)P(L geq epsilon/2) + epsilon/2 < epsilon
          Leftrightarrow P(L geq epsilon/2) < epsilon/(2 - epsilon)
          endalign*$



          Therefore, if



          $forall epsilon, forall m geq m_3:=m(epsilon/2, epsilon/(2 - epsilon)), P(L geq epsilon/2) < epsilon/(2 - epsilon)mbox (b)$ holds,



          $forall epsilon, forall m geq m(epsilon)=m_3, E[L] leq epsilon mbox (c)$ holds too (and vice versa)



          Prove $(b) Rightarrow (a)$:



          Using The Fundamental Theorem of Statistical Learning for PAC learnable H with VC dimension $d$, we have:



          $beginalign*
          (&epsilon/2, 1/2)mbox-learnable H with m_1 Leftrightarrow exists C_1 > 0, m_1 geq C_1fracd + log(2)epsilon/2\
          &Leftrightarrow log(1/epsilon)(m_1 + 1/epsilon^2) geq fraclog(1/epsilon)(C_1d + C_1log(2) + 1/(2epsilon))epsilon/2
          endalign*$



          which uses $1/epsilon > 1$ and $log(1/epsilon) > 0$.



          Now we use an inequality without proof (plot the function here)



          $forall x > 1, forall d, C_1 geq 0, exists C_2 > 0, f(x)=fraclog(x)(C_1d+C_1log(2)+x/2)dlog(2x)+log(2x-1) geq C_2$



          Setting $x=1/epsilon$, we continue as:



          $beginalign*
          &... oversetexists C_2geq C_2fracdlog(2/epsilon) + log((2-epsilon)/epsilon)epsilon/2 oversetexists C_3geq frac1C_3 m_3
          Leftrightarrow (epsilon/2, epsilon/(2-epsilon))mbox-learnable H with m_3
          endalign*$



          By setting $m_2 := C_3log(1/epsilon)(m_1 + 1/epsilon^2)$, we have $m_2 geq m_3$, thus



          $beginalign*
          &forall epsilon, forall m geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
          &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2) geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
          &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2), E[L] < epsilon
          endalign*$
          .



          Proof is complete.






          share|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46638%2fa-question-on-realizable-sample-complexity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            We want to prove:



            If H is PAC learnable, then $forall epsilon, exists C, forall m geq m_2:=Clog(1/epsilon)(m_1+1/epsilon^2), E[L] leq epsilon mbox (a)$

            where $m_1:=m(epsilon/2,1/2)$



            Since $L leq 1$, we have $E[L] leq 1$. So proof is trivial for $epsilon geq 1$. Let $epsilon in (0, 1)$.



            Find an equivalence for $(a)$:



            $beginalign*
            E[L] &= int_l geq epsilon / 2ldP + int_l< epsilon / 2 ldP leq int_l geq epsilon / 2dP + int_l< epsilon / 2 fracepsilon2 dP\
            &= P(L geq epsilon/2) + fracepsilon2 P(L <epsilon/2)\
            &= (1 - epsilon/2)P(L geq epsilon/2) + epsilon/2 < epsilon
            Leftrightarrow P(L geq epsilon/2) < epsilon/(2 - epsilon)
            endalign*$



            Therefore, if



            $forall epsilon, forall m geq m_3:=m(epsilon/2, epsilon/(2 - epsilon)), P(L geq epsilon/2) < epsilon/(2 - epsilon)mbox (b)$ holds,



            $forall epsilon, forall m geq m(epsilon)=m_3, E[L] leq epsilon mbox (c)$ holds too (and vice versa)



            Prove $(b) Rightarrow (a)$:



            Using The Fundamental Theorem of Statistical Learning for PAC learnable H with VC dimension $d$, we have:



            $beginalign*
            (&epsilon/2, 1/2)mbox-learnable H with m_1 Leftrightarrow exists C_1 > 0, m_1 geq C_1fracd + log(2)epsilon/2\
            &Leftrightarrow log(1/epsilon)(m_1 + 1/epsilon^2) geq fraclog(1/epsilon)(C_1d + C_1log(2) + 1/(2epsilon))epsilon/2
            endalign*$



            which uses $1/epsilon > 1$ and $log(1/epsilon) > 0$.



            Now we use an inequality without proof (plot the function here)



            $forall x > 1, forall d, C_1 geq 0, exists C_2 > 0, f(x)=fraclog(x)(C_1d+C_1log(2)+x/2)dlog(2x)+log(2x-1) geq C_2$



            Setting $x=1/epsilon$, we continue as:



            $beginalign*
            &... oversetexists C_2geq C_2fracdlog(2/epsilon) + log((2-epsilon)/epsilon)epsilon/2 oversetexists C_3geq frac1C_3 m_3
            Leftrightarrow (epsilon/2, epsilon/(2-epsilon))mbox-learnable H with m_3
            endalign*$



            By setting $m_2 := C_3log(1/epsilon)(m_1 + 1/epsilon^2)$, we have $m_2 geq m_3$, thus



            $beginalign*
            &forall epsilon, forall m geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
            &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2) geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
            &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2), E[L] < epsilon
            endalign*$
            .



            Proof is complete.






            share|improve this answer











            $endgroup$

















              0












              $begingroup$

              We want to prove:



              If H is PAC learnable, then $forall epsilon, exists C, forall m geq m_2:=Clog(1/epsilon)(m_1+1/epsilon^2), E[L] leq epsilon mbox (a)$

              where $m_1:=m(epsilon/2,1/2)$



              Since $L leq 1$, we have $E[L] leq 1$. So proof is trivial for $epsilon geq 1$. Let $epsilon in (0, 1)$.



              Find an equivalence for $(a)$:



              $beginalign*
              E[L] &= int_l geq epsilon / 2ldP + int_l< epsilon / 2 ldP leq int_l geq epsilon / 2dP + int_l< epsilon / 2 fracepsilon2 dP\
              &= P(L geq epsilon/2) + fracepsilon2 P(L <epsilon/2)\
              &= (1 - epsilon/2)P(L geq epsilon/2) + epsilon/2 < epsilon
              Leftrightarrow P(L geq epsilon/2) < epsilon/(2 - epsilon)
              endalign*$



              Therefore, if



              $forall epsilon, forall m geq m_3:=m(epsilon/2, epsilon/(2 - epsilon)), P(L geq epsilon/2) < epsilon/(2 - epsilon)mbox (b)$ holds,



              $forall epsilon, forall m geq m(epsilon)=m_3, E[L] leq epsilon mbox (c)$ holds too (and vice versa)



              Prove $(b) Rightarrow (a)$:



              Using The Fundamental Theorem of Statistical Learning for PAC learnable H with VC dimension $d$, we have:



              $beginalign*
              (&epsilon/2, 1/2)mbox-learnable H with m_1 Leftrightarrow exists C_1 > 0, m_1 geq C_1fracd + log(2)epsilon/2\
              &Leftrightarrow log(1/epsilon)(m_1 + 1/epsilon^2) geq fraclog(1/epsilon)(C_1d + C_1log(2) + 1/(2epsilon))epsilon/2
              endalign*$



              which uses $1/epsilon > 1$ and $log(1/epsilon) > 0$.



              Now we use an inequality without proof (plot the function here)



              $forall x > 1, forall d, C_1 geq 0, exists C_2 > 0, f(x)=fraclog(x)(C_1d+C_1log(2)+x/2)dlog(2x)+log(2x-1) geq C_2$



              Setting $x=1/epsilon$, we continue as:



              $beginalign*
              &... oversetexists C_2geq C_2fracdlog(2/epsilon) + log((2-epsilon)/epsilon)epsilon/2 oversetexists C_3geq frac1C_3 m_3
              Leftrightarrow (epsilon/2, epsilon/(2-epsilon))mbox-learnable H with m_3
              endalign*$



              By setting $m_2 := C_3log(1/epsilon)(m_1 + 1/epsilon^2)$, we have $m_2 geq m_3$, thus



              $beginalign*
              &forall epsilon, forall m geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
              &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2) geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
              &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2), E[L] < epsilon
              endalign*$
              .



              Proof is complete.






              share|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                We want to prove:



                If H is PAC learnable, then $forall epsilon, exists C, forall m geq m_2:=Clog(1/epsilon)(m_1+1/epsilon^2), E[L] leq epsilon mbox (a)$

                where $m_1:=m(epsilon/2,1/2)$



                Since $L leq 1$, we have $E[L] leq 1$. So proof is trivial for $epsilon geq 1$. Let $epsilon in (0, 1)$.



                Find an equivalence for $(a)$:



                $beginalign*
                E[L] &= int_l geq epsilon / 2ldP + int_l< epsilon / 2 ldP leq int_l geq epsilon / 2dP + int_l< epsilon / 2 fracepsilon2 dP\
                &= P(L geq epsilon/2) + fracepsilon2 P(L <epsilon/2)\
                &= (1 - epsilon/2)P(L geq epsilon/2) + epsilon/2 < epsilon
                Leftrightarrow P(L geq epsilon/2) < epsilon/(2 - epsilon)
                endalign*$



                Therefore, if



                $forall epsilon, forall m geq m_3:=m(epsilon/2, epsilon/(2 - epsilon)), P(L geq epsilon/2) < epsilon/(2 - epsilon)mbox (b)$ holds,



                $forall epsilon, forall m geq m(epsilon)=m_3, E[L] leq epsilon mbox (c)$ holds too (and vice versa)



                Prove $(b) Rightarrow (a)$:



                Using The Fundamental Theorem of Statistical Learning for PAC learnable H with VC dimension $d$, we have:



                $beginalign*
                (&epsilon/2, 1/2)mbox-learnable H with m_1 Leftrightarrow exists C_1 > 0, m_1 geq C_1fracd + log(2)epsilon/2\
                &Leftrightarrow log(1/epsilon)(m_1 + 1/epsilon^2) geq fraclog(1/epsilon)(C_1d + C_1log(2) + 1/(2epsilon))epsilon/2
                endalign*$



                which uses $1/epsilon > 1$ and $log(1/epsilon) > 0$.



                Now we use an inequality without proof (plot the function here)



                $forall x > 1, forall d, C_1 geq 0, exists C_2 > 0, f(x)=fraclog(x)(C_1d+C_1log(2)+x/2)dlog(2x)+log(2x-1) geq C_2$



                Setting $x=1/epsilon$, we continue as:



                $beginalign*
                &... oversetexists C_2geq C_2fracdlog(2/epsilon) + log((2-epsilon)/epsilon)epsilon/2 oversetexists C_3geq frac1C_3 m_3
                Leftrightarrow (epsilon/2, epsilon/(2-epsilon))mbox-learnable H with m_3
                endalign*$



                By setting $m_2 := C_3log(1/epsilon)(m_1 + 1/epsilon^2)$, we have $m_2 geq m_3$, thus



                $beginalign*
                &forall epsilon, forall m geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
                &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2) geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
                &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2), E[L] < epsilon
                endalign*$
                .



                Proof is complete.






                share|improve this answer











                $endgroup$



                We want to prove:



                If H is PAC learnable, then $forall epsilon, exists C, forall m geq m_2:=Clog(1/epsilon)(m_1+1/epsilon^2), E[L] leq epsilon mbox (a)$

                where $m_1:=m(epsilon/2,1/2)$



                Since $L leq 1$, we have $E[L] leq 1$. So proof is trivial for $epsilon geq 1$. Let $epsilon in (0, 1)$.



                Find an equivalence for $(a)$:



                $beginalign*
                E[L] &= int_l geq epsilon / 2ldP + int_l< epsilon / 2 ldP leq int_l geq epsilon / 2dP + int_l< epsilon / 2 fracepsilon2 dP\
                &= P(L geq epsilon/2) + fracepsilon2 P(L <epsilon/2)\
                &= (1 - epsilon/2)P(L geq epsilon/2) + epsilon/2 < epsilon
                Leftrightarrow P(L geq epsilon/2) < epsilon/(2 - epsilon)
                endalign*$



                Therefore, if



                $forall epsilon, forall m geq m_3:=m(epsilon/2, epsilon/(2 - epsilon)), P(L geq epsilon/2) < epsilon/(2 - epsilon)mbox (b)$ holds,



                $forall epsilon, forall m geq m(epsilon)=m_3, E[L] leq epsilon mbox (c)$ holds too (and vice versa)



                Prove $(b) Rightarrow (a)$:



                Using The Fundamental Theorem of Statistical Learning for PAC learnable H with VC dimension $d$, we have:



                $beginalign*
                (&epsilon/2, 1/2)mbox-learnable H with m_1 Leftrightarrow exists C_1 > 0, m_1 geq C_1fracd + log(2)epsilon/2\
                &Leftrightarrow log(1/epsilon)(m_1 + 1/epsilon^2) geq fraclog(1/epsilon)(C_1d + C_1log(2) + 1/(2epsilon))epsilon/2
                endalign*$



                which uses $1/epsilon > 1$ and $log(1/epsilon) > 0$.



                Now we use an inequality without proof (plot the function here)



                $forall x > 1, forall d, C_1 geq 0, exists C_2 > 0, f(x)=fraclog(x)(C_1d+C_1log(2)+x/2)dlog(2x)+log(2x-1) geq C_2$



                Setting $x=1/epsilon$, we continue as:



                $beginalign*
                &... oversetexists C_2geq C_2fracdlog(2/epsilon) + log((2-epsilon)/epsilon)epsilon/2 oversetexists C_3geq frac1C_3 m_3
                Leftrightarrow (epsilon/2, epsilon/(2-epsilon))mbox-learnable H with m_3
                endalign*$



                By setting $m_2 := C_3log(1/epsilon)(m_1 + 1/epsilon^2)$, we have $m_2 geq m_3$, thus



                $beginalign*
                &forall epsilon, forall m geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
                &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2) geq m_3, P(L geq epsilon/2) < epsilon/(2 - epsilon)\
                &Rightarrow forall epsilon, exists C, forall m geq m_2 := Clog(1/epsilon)(m_1 + 1/epsilon^2), E[L] < epsilon
                endalign*$
                .



                Proof is complete.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Mar 4 at 22:23

























                answered Mar 4 at 19:05









                EsmailianEsmailian

                3,001320




                3,001320



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46638%2fa-question-on-realizable-sample-complexity%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                    Luettelo Yhdysvaltain laivaston lentotukialuksista Lähteet | Navigointivalikko

                    Gary (muusikko) Sisällysluettelo Historia | Rockin' High | Lähteet | Aiheesta muualla | NavigointivalikkoInfobox OKTuomas "Gary" Keskinen Ancaran kitaristiksiProjekti Rockin' High