If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace. The 2019 Stack Overflow Developer Survey Results Are InProve that S forms a subspace of R^3Prove that is a subspaceWhy do these vectors not belong to the same vector space?Am I correctly determining whether the vectors are in the subspace?Prove the following set of vectors is a subspaceCan a subspace S containing vectors with a finite number of nonzero components contain the zero vector?Vector subspace of two linear transformationsProve that if the following two vectors are not parallel that the following holds.Are the polynomials of form $a_0 + a_1x + a_2x^2 +a_3x^3$, with $a_i$ rational, a subspace of $P_3$?Why are all vectors with exactly one nonzero component not a subspace of $mathbbR^3$?

Worn-tile Scrabble

Why can't devices on different VLANs, but on the same subnet, communicate?

The phrase "to the numbers born"?

How come people say “Would of”?

Why was M87 targeted for the Event Horizon Telescope instead of Sagittarius A*?

How can I connect public and private node through a reverse SSH tunnel?

"as much details as you can remember"

Can we generate random numbers using irrational numbers like π and e?

Cooking pasta in a water boiler

How to obtain a position of last non-zero element

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Why are there uneven bright areas in this photo of black hole?

What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?

Output the Arecibo Message

Can withdrawing asylum be illegal?

Right tool to dig six foot holes?

Button changing its text & action. Good or terrible?

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

Does a dangling wire really electrocute me if I'm standing in water?

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

How much of the clove should I use when using big garlic heads?

What to expect from an e-bike service?

Why not take a picture of a closer black hole?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?



If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



The 2019 Stack Overflow Developer Survey Results Are InProve that S forms a subspace of R^3Prove that is a subspaceWhy do these vectors not belong to the same vector space?Am I correctly determining whether the vectors are in the subspace?Prove the following set of vectors is a subspaceCan a subspace S containing vectors with a finite number of nonzero components contain the zero vector?Vector subspace of two linear transformationsProve that if the following two vectors are not parallel that the following holds.Are the polynomials of form $a_0 + a_1x + a_2x^2 +a_3x^3$, with $a_i$ rational, a subspace of $P_3$?Why are all vectors with exactly one nonzero component not a subspace of $mathbbR^3$?










2












$begingroup$


If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



    I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



      I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this










      share|cite|improve this question











      $endgroup$




      If A is an m by n matrix, prove that the set of vectors b that are not in C(A) forms a subspace.



      I would like to first understand if I am interpreting the question correctly. My understanding of this question is that I need to first prove that the set of vectors b are equal to the 0 vector, and if b1 and b2 are members of the subspace, then the sum of set b should be a member, and so should some scalar C multiplied by the set of vectors b. I just don't understand how to actually prove this







      linear-algebra matrices vector-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 30 at 11:05









      YuiTo Cheng

      2,3694937




      2,3694937










      asked Mar 30 at 7:37









      AdamAdam

      345




      345




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Your result is wrong. Maybe this picture can help you figure out.



          enter image description here



          Since every subspace must contain the zero vector, noted by $underline0$.



          We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



          But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



          Therefore, it can not form a subspace.






          share|cite|improve this answer









          $endgroup$




















            5












            $begingroup$

            Your first condition should be $0$ is in a subspace.



            Also, the result is not true.



            Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



            $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              How do I know that 0 is in C(A)?
              $endgroup$
              – Adam
              Mar 30 at 7:48











            • $begingroup$
              $C(A)$ is the column space right?
              $endgroup$
              – Siong Thye Goh
              Mar 30 at 7:50










            • $begingroup$
              Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
              $endgroup$
              – Adam
              Mar 30 at 7:52






            • 1




              $begingroup$
              I have included an explaination of why $0_m in C(A)$.
              $endgroup$
              – Siong Thye Goh
              Mar 30 at 7:55











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168021%2fif-a-is-an-m-by-n-matrix-prove-that-the-set-of-vectors-b-that-are-not-in-ca-f%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Your result is wrong. Maybe this picture can help you figure out.



            enter image description here



            Since every subspace must contain the zero vector, noted by $underline0$.



            We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



            But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



            Therefore, it can not form a subspace.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Your result is wrong. Maybe this picture can help you figure out.



              enter image description here



              Since every subspace must contain the zero vector, noted by $underline0$.



              We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



              But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



              Therefore, it can not form a subspace.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Your result is wrong. Maybe this picture can help you figure out.



                enter image description here



                Since every subspace must contain the zero vector, noted by $underline0$.



                We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



                But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



                Therefore, it can not form a subspace.






                share|cite|improve this answer









                $endgroup$



                Your result is wrong. Maybe this picture can help you figure out.



                enter image description here



                Since every subspace must contain the zero vector, noted by $underline0$.



                We know that $C(A)$ is a subspace for $mathbbR^m$, so $underline0in C(A) subseteq mathbbR^m$, that means the zero vector are inside the column space and also $mathbbR^m$.



                But if we consider $mathbbR^msetminus C(A)$, by the picture, it means we are now cancelling the red circle out, so the zero vector is no longer inside this "space".



                Therefore, it can not form a subspace.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 30 at 9:27









                Jade PangJade Pang

                1114




                1114





















                    5












                    $begingroup$

                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      Mar 30 at 7:48











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:50










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      Mar 30 at 7:52






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:55















                    5












                    $begingroup$

                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      Mar 30 at 7:48











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:50










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      Mar 30 at 7:52






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:55













                    5












                    5








                    5





                    $begingroup$

                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.






                    share|cite|improve this answer











                    $endgroup$



                    Your first condition should be $0$ is in a subspace.



                    Also, the result is not true.



                    Let $0_m$ be the zero vector in $mathbbR^m$. We know that $0_m in C(A)$ since $sum_i=1^n A_i cdot 0=0_m$.



                    $0_m$ is in $C(A)$, $0_m$ can't be in the set of vector that are not in $C(A)$. Hence the set of vectors that are not in $C(A)$ can't form a subspace.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Mar 30 at 7:54

























                    answered Mar 30 at 7:44









                    Siong Thye GohSiong Thye Goh

                    104k1468120




                    104k1468120











                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      Mar 30 at 7:48











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:50










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      Mar 30 at 7:52






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:55
















                    • $begingroup$
                      How do I know that 0 is in C(A)?
                      $endgroup$
                      – Adam
                      Mar 30 at 7:48











                    • $begingroup$
                      $C(A)$ is the column space right?
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:50










                    • $begingroup$
                      Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                      $endgroup$
                      – Adam
                      Mar 30 at 7:52






                    • 1




                      $begingroup$
                      I have included an explaination of why $0_m in C(A)$.
                      $endgroup$
                      – Siong Thye Goh
                      Mar 30 at 7:55















                    $begingroup$
                    How do I know that 0 is in C(A)?
                    $endgroup$
                    – Adam
                    Mar 30 at 7:48





                    $begingroup$
                    How do I know that 0 is in C(A)?
                    $endgroup$
                    – Adam
                    Mar 30 at 7:48













                    $begingroup$
                    $C(A)$ is the column space right?
                    $endgroup$
                    – Siong Thye Goh
                    Mar 30 at 7:50




                    $begingroup$
                    $C(A)$ is the column space right?
                    $endgroup$
                    – Siong Thye Goh
                    Mar 30 at 7:50












                    $begingroup$
                    Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                    $endgroup$
                    – Adam
                    Mar 30 at 7:52




                    $begingroup$
                    Correct. I am new to linear algebra and am trying to understand the definitions Column space, null space, subspace, etc...Perhaps I am not understanding the proper definition of column space
                    $endgroup$
                    – Adam
                    Mar 30 at 7:52




                    1




                    1




                    $begingroup$
                    I have included an explaination of why $0_m in C(A)$.
                    $endgroup$
                    – Siong Thye Goh
                    Mar 30 at 7:55




                    $begingroup$
                    I have included an explaination of why $0_m in C(A)$.
                    $endgroup$
                    – Siong Thye Goh
                    Mar 30 at 7:55

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168021%2fif-a-is-an-m-by-n-matrix-prove-that-the-set-of-vectors-b-that-are-not-in-ca-f%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Marja Vauras Lähteet | Aiheesta muualla | NavigointivalikkoMarja Vauras Turun yliopiston tutkimusportaalissaInfobox OKSuomalaisen Tiedeakatemian varsinaiset jäsenetKasvatustieteiden tiedekunnan dekaanit ja muu johtoMarja VaurasKoulutusvienti on kestävyys- ja ketteryyslaji (2.5.2017)laajentamallaWorldCat Identities0000 0001 0855 9405n86069603utb201588738523620927

                    Which is better: GPT or RelGAN for text generation?2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task

                    Is this part of the description of the Archfey warlock's Misty Escape feature redundant?When is entropic ward considered “used”?How does the reaction timing work for Wrath of the Storm? Can it potentially prevent the damage from the triggering attack?Does the Dark Arts Archlich warlock patrons's Arcane Invisibility activate every time you cast a level 1+ spell?When attacking while invisible, when exactly does invisibility break?Can I cast Hellish Rebuke on my turn?Do I have to “pre-cast” a reaction spell in order for it to be triggered?What happens if a Player Misty Escapes into an Invisible CreatureCan a reaction interrupt multiattack?Does the Fiend-patron warlock's Hurl Through Hell feature dispel effects that require the target to be on the same plane as the caster?What are you allowed to do while using the Warlock's Eldritch Master feature?