How to perform (modified) t-test for multiple variables and multiple models on Python (Machine Learning) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) 2019 Moderator Election Q&A - Questionnaire 2019 Community Moderator Election ResultsPython vs R for machine learningPython Machine Learning ExpertsPython distributed machine learningHow to plot multiple variables with Pandas and BokehPython: Handling imbalance Classes in python Machine LearningPickled machine learning modelsConsistently inconsistent cross-validation results that are wildly different from original model accuracyTensorflow regression predicting 1 for all inputsStatistical test for machine learningHow standardizing and/or log transformation affect prediction result in machine learning models

What is the origin of 落第?

Resize vertical bars (absolute-value symbols)

In musical terms, what properties are varied by the human voice to produce different words / syllables?

Is there hard evidence that the grant peer review system performs significantly better than random?

Sally's older brother

Simple Http Server

What is the difference between a "ranged attack" and a "ranged weapon attack"?

Why is a lens darker than other ones when applying the same settings?

What are the main differences between Stargate SG-1 cuts?

Trying to understand entropy as a novice in thermodynamics

What is the chair depicted in Cesare Maccari's 1889 painting "Cicerone denuncia Catilina"?

How to write capital alpha?

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

A proverb that is used to imply that you have unexpectedly faced a big problem

Tips to organize LaTeX presentations for a semester

Random body shuffle every night—can we still function?

Is multiple magic items in one inherently imbalanced?

Is there public access to the Meteor Crater in Arizona?

I can't produce songs

How much damage would a cupful of neutron star matter do to the Earth?

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

How does light 'choose' between wave and particle behaviour?

How to ternary Plot3D a function



How to perform (modified) t-test for multiple variables and multiple models on Python (Machine Learning)



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
2019 Moderator Election Q&A - Questionnaire
2019 Community Moderator Election ResultsPython vs R for machine learningPython Machine Learning ExpertsPython distributed machine learningHow to plot multiple variables with Pandas and BokehPython: Handling imbalance Classes in python Machine LearningPickled machine learning modelsConsistently inconsistent cross-validation results that are wildly different from original model accuracyTensorflow regression predicting 1 for all inputsStatistical test for machine learningHow standardizing and/or log transformation affect prediction result in machine learning models










1












$begingroup$


I have created and analyzed around 16 machine learning models using WEKA. Right now, I have a CSV file which shows the models' metrics (such as percent_correct, F-measure, recall, precision, etc.). I am trying to conduct a (modified) student's t-test on these models. I am able to conduct one (according to THIS link) where I compare only ONE variable common to only TWO models. I want to perform a (or multiple) t-tests with MULTIPLE variables and MULTIPLE models at once.



As mentioned, I can only perform the test with one variable (let's say F-measure) among two models (let's say decision table and neural net).



Here's the code for that. I am performing a Kolmogorov-Smirnov test (modified t):



from matplotlib import pyplot
from pandas import read_csv, DataFrame
from scipy.stats import ks_2samp

results = DataFrame()
results['A'] = read_csv('LMT (f-measure).csv', header=None).values[:, 0]
results['B'] = read_csv('LWL (f-measure).csv', header=None).values[:, 0]
print(results.describe())
results.boxplot()
pyplot.show()
results.hist()
pyplot.show()

value, pvalue = ks_2samp(results['A'], results['B'])
alpha = 0.05
print(value, pvalue)
if pvalue > alpha:
print('Samples are likely drawn from the same distributions (fail to reject H0)')
else:
print('Samples are likely drawn from different distributions (reject H0)')


Any ideas?










share|improve this question











$endgroup$











  • $begingroup$
    I'm having trouble imagining any scenario where this would be a good idea - t-tests are useful and meaningful for a very specific set of statistical assumptions and interpretations, and this doesn't sound like one of them. I think you have an X-Y problem - perhaps you could explain what it is you are wanting to accomplish with this, so that someone might be able to suggest what sort of procedure you might want to try instead?
    $endgroup$
    – BrianH
    Apr 4 at 0:24










  • $begingroup$
    I separate ML into two sections: making models and analyzing them. I am in the analysis stage. Having made 16 different models, I want to see which ones are the best. One approach is to simply look at raw metrics outputted by the program and compare it between the models. For instance, I could look for which model was the "best" by looking for the one with the highest "Mathew's Correlation" (as an example). However, I don't know if the differences are statistically significant (that's why we have these other tests (like t-tests)). I want to do these tests, however more efficiently: thus my Q.
    $endgroup$
    – Shounak Ray
    Apr 4 at 1:21










  • $begingroup$
    Found a great solution! Check out my answer!
    $endgroup$
    – Shounak Ray
    Apr 4 at 6:24















1












$begingroup$


I have created and analyzed around 16 machine learning models using WEKA. Right now, I have a CSV file which shows the models' metrics (such as percent_correct, F-measure, recall, precision, etc.). I am trying to conduct a (modified) student's t-test on these models. I am able to conduct one (according to THIS link) where I compare only ONE variable common to only TWO models. I want to perform a (or multiple) t-tests with MULTIPLE variables and MULTIPLE models at once.



As mentioned, I can only perform the test with one variable (let's say F-measure) among two models (let's say decision table and neural net).



Here's the code for that. I am performing a Kolmogorov-Smirnov test (modified t):



from matplotlib import pyplot
from pandas import read_csv, DataFrame
from scipy.stats import ks_2samp

results = DataFrame()
results['A'] = read_csv('LMT (f-measure).csv', header=None).values[:, 0]
results['B'] = read_csv('LWL (f-measure).csv', header=None).values[:, 0]
print(results.describe())
results.boxplot()
pyplot.show()
results.hist()
pyplot.show()

value, pvalue = ks_2samp(results['A'], results['B'])
alpha = 0.05
print(value, pvalue)
if pvalue > alpha:
print('Samples are likely drawn from the same distributions (fail to reject H0)')
else:
print('Samples are likely drawn from different distributions (reject H0)')


Any ideas?










share|improve this question











$endgroup$











  • $begingroup$
    I'm having trouble imagining any scenario where this would be a good idea - t-tests are useful and meaningful for a very specific set of statistical assumptions and interpretations, and this doesn't sound like one of them. I think you have an X-Y problem - perhaps you could explain what it is you are wanting to accomplish with this, so that someone might be able to suggest what sort of procedure you might want to try instead?
    $endgroup$
    – BrianH
    Apr 4 at 0:24










  • $begingroup$
    I separate ML into two sections: making models and analyzing them. I am in the analysis stage. Having made 16 different models, I want to see which ones are the best. One approach is to simply look at raw metrics outputted by the program and compare it between the models. For instance, I could look for which model was the "best" by looking for the one with the highest "Mathew's Correlation" (as an example). However, I don't know if the differences are statistically significant (that's why we have these other tests (like t-tests)). I want to do these tests, however more efficiently: thus my Q.
    $endgroup$
    – Shounak Ray
    Apr 4 at 1:21










  • $begingroup$
    Found a great solution! Check out my answer!
    $endgroup$
    – Shounak Ray
    Apr 4 at 6:24













1












1








1


1



$begingroup$


I have created and analyzed around 16 machine learning models using WEKA. Right now, I have a CSV file which shows the models' metrics (such as percent_correct, F-measure, recall, precision, etc.). I am trying to conduct a (modified) student's t-test on these models. I am able to conduct one (according to THIS link) where I compare only ONE variable common to only TWO models. I want to perform a (or multiple) t-tests with MULTIPLE variables and MULTIPLE models at once.



As mentioned, I can only perform the test with one variable (let's say F-measure) among two models (let's say decision table and neural net).



Here's the code for that. I am performing a Kolmogorov-Smirnov test (modified t):



from matplotlib import pyplot
from pandas import read_csv, DataFrame
from scipy.stats import ks_2samp

results = DataFrame()
results['A'] = read_csv('LMT (f-measure).csv', header=None).values[:, 0]
results['B'] = read_csv('LWL (f-measure).csv', header=None).values[:, 0]
print(results.describe())
results.boxplot()
pyplot.show()
results.hist()
pyplot.show()

value, pvalue = ks_2samp(results['A'], results['B'])
alpha = 0.05
print(value, pvalue)
if pvalue > alpha:
print('Samples are likely drawn from the same distributions (fail to reject H0)')
else:
print('Samples are likely drawn from different distributions (reject H0)')


Any ideas?










share|improve this question











$endgroup$




I have created and analyzed around 16 machine learning models using WEKA. Right now, I have a CSV file which shows the models' metrics (such as percent_correct, F-measure, recall, precision, etc.). I am trying to conduct a (modified) student's t-test on these models. I am able to conduct one (according to THIS link) where I compare only ONE variable common to only TWO models. I want to perform a (or multiple) t-tests with MULTIPLE variables and MULTIPLE models at once.



As mentioned, I can only perform the test with one variable (let's say F-measure) among two models (let's say decision table and neural net).



Here's the code for that. I am performing a Kolmogorov-Smirnov test (modified t):



from matplotlib import pyplot
from pandas import read_csv, DataFrame
from scipy.stats import ks_2samp

results = DataFrame()
results['A'] = read_csv('LMT (f-measure).csv', header=None).values[:, 0]
results['B'] = read_csv('LWL (f-measure).csv', header=None).values[:, 0]
print(results.describe())
results.boxplot()
pyplot.show()
results.hist()
pyplot.show()

value, pvalue = ks_2samp(results['A'], results['B'])
alpha = 0.05
print(value, pvalue)
if pvalue > alpha:
print('Samples are likely drawn from the same distributions (fail to reject H0)')
else:
print('Samples are likely drawn from different distributions (reject H0)')


Any ideas?







machine-learning python pandas statistics visualization






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Apr 4 at 8:00







Shounak Ray

















asked Apr 3 at 20:46









Shounak RayShounak Ray

62




62











  • $begingroup$
    I'm having trouble imagining any scenario where this would be a good idea - t-tests are useful and meaningful for a very specific set of statistical assumptions and interpretations, and this doesn't sound like one of them. I think you have an X-Y problem - perhaps you could explain what it is you are wanting to accomplish with this, so that someone might be able to suggest what sort of procedure you might want to try instead?
    $endgroup$
    – BrianH
    Apr 4 at 0:24










  • $begingroup$
    I separate ML into two sections: making models and analyzing them. I am in the analysis stage. Having made 16 different models, I want to see which ones are the best. One approach is to simply look at raw metrics outputted by the program and compare it between the models. For instance, I could look for which model was the "best" by looking for the one with the highest "Mathew's Correlation" (as an example). However, I don't know if the differences are statistically significant (that's why we have these other tests (like t-tests)). I want to do these tests, however more efficiently: thus my Q.
    $endgroup$
    – Shounak Ray
    Apr 4 at 1:21










  • $begingroup$
    Found a great solution! Check out my answer!
    $endgroup$
    – Shounak Ray
    Apr 4 at 6:24
















  • $begingroup$
    I'm having trouble imagining any scenario where this would be a good idea - t-tests are useful and meaningful for a very specific set of statistical assumptions and interpretations, and this doesn't sound like one of them. I think you have an X-Y problem - perhaps you could explain what it is you are wanting to accomplish with this, so that someone might be able to suggest what sort of procedure you might want to try instead?
    $endgroup$
    – BrianH
    Apr 4 at 0:24










  • $begingroup$
    I separate ML into two sections: making models and analyzing them. I am in the analysis stage. Having made 16 different models, I want to see which ones are the best. One approach is to simply look at raw metrics outputted by the program and compare it between the models. For instance, I could look for which model was the "best" by looking for the one with the highest "Mathew's Correlation" (as an example). However, I don't know if the differences are statistically significant (that's why we have these other tests (like t-tests)). I want to do these tests, however more efficiently: thus my Q.
    $endgroup$
    – Shounak Ray
    Apr 4 at 1:21










  • $begingroup$
    Found a great solution! Check out my answer!
    $endgroup$
    – Shounak Ray
    Apr 4 at 6:24















$begingroup$
I'm having trouble imagining any scenario where this would be a good idea - t-tests are useful and meaningful for a very specific set of statistical assumptions and interpretations, and this doesn't sound like one of them. I think you have an X-Y problem - perhaps you could explain what it is you are wanting to accomplish with this, so that someone might be able to suggest what sort of procedure you might want to try instead?
$endgroup$
– BrianH
Apr 4 at 0:24




$begingroup$
I'm having trouble imagining any scenario where this would be a good idea - t-tests are useful and meaningful for a very specific set of statistical assumptions and interpretations, and this doesn't sound like one of them. I think you have an X-Y problem - perhaps you could explain what it is you are wanting to accomplish with this, so that someone might be able to suggest what sort of procedure you might want to try instead?
$endgroup$
– BrianH
Apr 4 at 0:24












$begingroup$
I separate ML into two sections: making models and analyzing them. I am in the analysis stage. Having made 16 different models, I want to see which ones are the best. One approach is to simply look at raw metrics outputted by the program and compare it between the models. For instance, I could look for which model was the "best" by looking for the one with the highest "Mathew's Correlation" (as an example). However, I don't know if the differences are statistically significant (that's why we have these other tests (like t-tests)). I want to do these tests, however more efficiently: thus my Q.
$endgroup$
– Shounak Ray
Apr 4 at 1:21




$begingroup$
I separate ML into two sections: making models and analyzing them. I am in the analysis stage. Having made 16 different models, I want to see which ones are the best. One approach is to simply look at raw metrics outputted by the program and compare it between the models. For instance, I could look for which model was the "best" by looking for the one with the highest "Mathew's Correlation" (as an example). However, I don't know if the differences are statistically significant (that's why we have these other tests (like t-tests)). I want to do these tests, however more efficiently: thus my Q.
$endgroup$
– Shounak Ray
Apr 4 at 1:21












$begingroup$
Found a great solution! Check out my answer!
$endgroup$
– Shounak Ray
Apr 4 at 6:24




$begingroup$
Found a great solution! Check out my answer!
$endgroup$
– Shounak Ray
Apr 4 at 6:24










1 Answer
1






active

oldest

votes


















0












$begingroup$

This is a simple solution to my question. It only deals with two models and two variables, but you could easily have lists with the names of the classifiers and the metrics you want to analyze. For my purposes, I just change the values of COI, ROI_1, and ROI_2 respectively.



NOTE: This solution is also generalizable.
How? Just change the values of COI, ROI_1, and ROI_2 and load any chosen dataset in df = pandas.read_csv("FILENAME.csv, ...). If you want another visualization, just change the pyplot settings near the end.



The key was assigning a new DataFrame to the original DataFrame and implementing the .loc["SOMESTRING"] method. It removes all the rows in the data, EXCEPT for the one specified as a parameter.



Remember, however, to include index_col=0 when you read the file OR use some other method to set the index of the DataFrame. Without doing this, your row values will just be indexes, from 0 to MAX_INDEX.



# Written: April 4, 2019

import pandas # for visualizations
from matplotlib import pyplot # for visualizations
from scipy.stats import ks_2samp # for 2-sample Kolmogorov-Smirnov test
import os # for deleting CSV files

# Functions which isolates DataFrame
def removeColumns(DataFrame, typeArray, stringOfInterest):
for i in range(0, len(typeArray)):
if typeArray[i].find(stringOfInterest) != -1:
continue
else:
DataFrame.drop(typeArray[i], axis = 1, inplace = True)

# Get the whole DataFrame
df = pandas.read_csv("ExperimentResultsCondensed.csv", index_col=0)
dfCopy = df

# Specified metrics and models for comparison
COI = "Area_under_PRC"
ROI_1 = "weka.classifiers.meta.AdaBoostM1[DecisionTable]"
ROI_2 = "weka.classifiers.meta.AdaBoostM1[DecisionStump]"

# Lists of header and row in dataFrame
# `rows` may act strangely
headers = list(df.dtypes.index)
rows = list(df.index)

# remove irrelevant rows
df1 = dfCopy.loc[ROI_1]
df2 = dfCopy.loc[ROI_2]

# remove irrelevant columns
removeColumns(df1, headers, COI)
removeColumns(df2, headers, COI)

# Make CSV files
df1.to_csv(str(ROI_1 + "-" + COI + ".csv"), index=False)
df2.to_csv(str(ROI_2 + "-" + COI) + ".csv", index=False)

results = pandas.DataFrame()
# Read CSV files
# The CSV files can be of any netric/measure, F-measure is used as an example
results[ROI_1] = pandas.read_csv(str(ROI_1 + "-" + COI + ".csv"), header=None).values[:, 0]
results[ROI_2] = pandas.read_csv(str(ROI_2 + "-" + COI + ".csv"), header=None).values[:, 0]

# Kolmogorov-Smirnov test since we have Non-Gaussian, independent, distinctive variance datasets
# Test configurations
value, pvalue = ks_2samp(results[ROI_1], results[ROI_2])
# Corresponding confidence level: 95%
alpha = 0.05

# Output the results
print('n')
print('33[1m' + '>>>TEST STATISTIC: ')
print(value)
print(">>>P-VALUE: ")
print(pvalue)
if pvalue > alpha:
print('t>>Samples are likely drawn from the same distributions (fail to reject H0 - NOT SIGNIFICANT)')
else:
print('t>>Samples are likely drawn from different distributions (reject H0 - SIGNIFICANT)')

# Plot files
df1.plot.density()
pyplot.xlabel(str(COI + " Values"))
pyplot.ylabel(str("Density"))
pyplot.title(str(COI + " Density Distribution of " + ROI_1))
pyplot.show()

df2.plot.density()
pyplot.xlabel(str(COI + " Values"))
pyplot.ylabel(str("Density"))
pyplot.title(str(COI + " Density Distribution of " + ROI_2))
pyplot.show()

# Delete Files
os.remove(str(ROI_1 + "-" + COI + ".csv"))
os.remove(str(ROI_2 + "-" + COI + ".csv"))





share|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "557"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48553%2fhow-to-perform-modified-t-test-for-multiple-variables-and-multiple-models-on-p%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    This is a simple solution to my question. It only deals with two models and two variables, but you could easily have lists with the names of the classifiers and the metrics you want to analyze. For my purposes, I just change the values of COI, ROI_1, and ROI_2 respectively.



    NOTE: This solution is also generalizable.
    How? Just change the values of COI, ROI_1, and ROI_2 and load any chosen dataset in df = pandas.read_csv("FILENAME.csv, ...). If you want another visualization, just change the pyplot settings near the end.



    The key was assigning a new DataFrame to the original DataFrame and implementing the .loc["SOMESTRING"] method. It removes all the rows in the data, EXCEPT for the one specified as a parameter.



    Remember, however, to include index_col=0 when you read the file OR use some other method to set the index of the DataFrame. Without doing this, your row values will just be indexes, from 0 to MAX_INDEX.



    # Written: April 4, 2019

    import pandas # for visualizations
    from matplotlib import pyplot # for visualizations
    from scipy.stats import ks_2samp # for 2-sample Kolmogorov-Smirnov test
    import os # for deleting CSV files

    # Functions which isolates DataFrame
    def removeColumns(DataFrame, typeArray, stringOfInterest):
    for i in range(0, len(typeArray)):
    if typeArray[i].find(stringOfInterest) != -1:
    continue
    else:
    DataFrame.drop(typeArray[i], axis = 1, inplace = True)

    # Get the whole DataFrame
    df = pandas.read_csv("ExperimentResultsCondensed.csv", index_col=0)
    dfCopy = df

    # Specified metrics and models for comparison
    COI = "Area_under_PRC"
    ROI_1 = "weka.classifiers.meta.AdaBoostM1[DecisionTable]"
    ROI_2 = "weka.classifiers.meta.AdaBoostM1[DecisionStump]"

    # Lists of header and row in dataFrame
    # `rows` may act strangely
    headers = list(df.dtypes.index)
    rows = list(df.index)

    # remove irrelevant rows
    df1 = dfCopy.loc[ROI_1]
    df2 = dfCopy.loc[ROI_2]

    # remove irrelevant columns
    removeColumns(df1, headers, COI)
    removeColumns(df2, headers, COI)

    # Make CSV files
    df1.to_csv(str(ROI_1 + "-" + COI + ".csv"), index=False)
    df2.to_csv(str(ROI_2 + "-" + COI) + ".csv", index=False)

    results = pandas.DataFrame()
    # Read CSV files
    # The CSV files can be of any netric/measure, F-measure is used as an example
    results[ROI_1] = pandas.read_csv(str(ROI_1 + "-" + COI + ".csv"), header=None).values[:, 0]
    results[ROI_2] = pandas.read_csv(str(ROI_2 + "-" + COI + ".csv"), header=None).values[:, 0]

    # Kolmogorov-Smirnov test since we have Non-Gaussian, independent, distinctive variance datasets
    # Test configurations
    value, pvalue = ks_2samp(results[ROI_1], results[ROI_2])
    # Corresponding confidence level: 95%
    alpha = 0.05

    # Output the results
    print('n')
    print('33[1m' + '>>>TEST STATISTIC: ')
    print(value)
    print(">>>P-VALUE: ")
    print(pvalue)
    if pvalue > alpha:
    print('t>>Samples are likely drawn from the same distributions (fail to reject H0 - NOT SIGNIFICANT)')
    else:
    print('t>>Samples are likely drawn from different distributions (reject H0 - SIGNIFICANT)')

    # Plot files
    df1.plot.density()
    pyplot.xlabel(str(COI + " Values"))
    pyplot.ylabel(str("Density"))
    pyplot.title(str(COI + " Density Distribution of " + ROI_1))
    pyplot.show()

    df2.plot.density()
    pyplot.xlabel(str(COI + " Values"))
    pyplot.ylabel(str("Density"))
    pyplot.title(str(COI + " Density Distribution of " + ROI_2))
    pyplot.show()

    # Delete Files
    os.remove(str(ROI_1 + "-" + COI + ".csv"))
    os.remove(str(ROI_2 + "-" + COI + ".csv"))





    share|improve this answer











    $endgroup$

















      0












      $begingroup$

      This is a simple solution to my question. It only deals with two models and two variables, but you could easily have lists with the names of the classifiers and the metrics you want to analyze. For my purposes, I just change the values of COI, ROI_1, and ROI_2 respectively.



      NOTE: This solution is also generalizable.
      How? Just change the values of COI, ROI_1, and ROI_2 and load any chosen dataset in df = pandas.read_csv("FILENAME.csv, ...). If you want another visualization, just change the pyplot settings near the end.



      The key was assigning a new DataFrame to the original DataFrame and implementing the .loc["SOMESTRING"] method. It removes all the rows in the data, EXCEPT for the one specified as a parameter.



      Remember, however, to include index_col=0 when you read the file OR use some other method to set the index of the DataFrame. Without doing this, your row values will just be indexes, from 0 to MAX_INDEX.



      # Written: April 4, 2019

      import pandas # for visualizations
      from matplotlib import pyplot # for visualizations
      from scipy.stats import ks_2samp # for 2-sample Kolmogorov-Smirnov test
      import os # for deleting CSV files

      # Functions which isolates DataFrame
      def removeColumns(DataFrame, typeArray, stringOfInterest):
      for i in range(0, len(typeArray)):
      if typeArray[i].find(stringOfInterest) != -1:
      continue
      else:
      DataFrame.drop(typeArray[i], axis = 1, inplace = True)

      # Get the whole DataFrame
      df = pandas.read_csv("ExperimentResultsCondensed.csv", index_col=0)
      dfCopy = df

      # Specified metrics and models for comparison
      COI = "Area_under_PRC"
      ROI_1 = "weka.classifiers.meta.AdaBoostM1[DecisionTable]"
      ROI_2 = "weka.classifiers.meta.AdaBoostM1[DecisionStump]"

      # Lists of header and row in dataFrame
      # `rows` may act strangely
      headers = list(df.dtypes.index)
      rows = list(df.index)

      # remove irrelevant rows
      df1 = dfCopy.loc[ROI_1]
      df2 = dfCopy.loc[ROI_2]

      # remove irrelevant columns
      removeColumns(df1, headers, COI)
      removeColumns(df2, headers, COI)

      # Make CSV files
      df1.to_csv(str(ROI_1 + "-" + COI + ".csv"), index=False)
      df2.to_csv(str(ROI_2 + "-" + COI) + ".csv", index=False)

      results = pandas.DataFrame()
      # Read CSV files
      # The CSV files can be of any netric/measure, F-measure is used as an example
      results[ROI_1] = pandas.read_csv(str(ROI_1 + "-" + COI + ".csv"), header=None).values[:, 0]
      results[ROI_2] = pandas.read_csv(str(ROI_2 + "-" + COI + ".csv"), header=None).values[:, 0]

      # Kolmogorov-Smirnov test since we have Non-Gaussian, independent, distinctive variance datasets
      # Test configurations
      value, pvalue = ks_2samp(results[ROI_1], results[ROI_2])
      # Corresponding confidence level: 95%
      alpha = 0.05

      # Output the results
      print('n')
      print('33[1m' + '>>>TEST STATISTIC: ')
      print(value)
      print(">>>P-VALUE: ")
      print(pvalue)
      if pvalue > alpha:
      print('t>>Samples are likely drawn from the same distributions (fail to reject H0 - NOT SIGNIFICANT)')
      else:
      print('t>>Samples are likely drawn from different distributions (reject H0 - SIGNIFICANT)')

      # Plot files
      df1.plot.density()
      pyplot.xlabel(str(COI + " Values"))
      pyplot.ylabel(str("Density"))
      pyplot.title(str(COI + " Density Distribution of " + ROI_1))
      pyplot.show()

      df2.plot.density()
      pyplot.xlabel(str(COI + " Values"))
      pyplot.ylabel(str("Density"))
      pyplot.title(str(COI + " Density Distribution of " + ROI_2))
      pyplot.show()

      # Delete Files
      os.remove(str(ROI_1 + "-" + COI + ".csv"))
      os.remove(str(ROI_2 + "-" + COI + ".csv"))





      share|improve this answer











      $endgroup$















        0












        0








        0





        $begingroup$

        This is a simple solution to my question. It only deals with two models and two variables, but you could easily have lists with the names of the classifiers and the metrics you want to analyze. For my purposes, I just change the values of COI, ROI_1, and ROI_2 respectively.



        NOTE: This solution is also generalizable.
        How? Just change the values of COI, ROI_1, and ROI_2 and load any chosen dataset in df = pandas.read_csv("FILENAME.csv, ...). If you want another visualization, just change the pyplot settings near the end.



        The key was assigning a new DataFrame to the original DataFrame and implementing the .loc["SOMESTRING"] method. It removes all the rows in the data, EXCEPT for the one specified as a parameter.



        Remember, however, to include index_col=0 when you read the file OR use some other method to set the index of the DataFrame. Without doing this, your row values will just be indexes, from 0 to MAX_INDEX.



        # Written: April 4, 2019

        import pandas # for visualizations
        from matplotlib import pyplot # for visualizations
        from scipy.stats import ks_2samp # for 2-sample Kolmogorov-Smirnov test
        import os # for deleting CSV files

        # Functions which isolates DataFrame
        def removeColumns(DataFrame, typeArray, stringOfInterest):
        for i in range(0, len(typeArray)):
        if typeArray[i].find(stringOfInterest) != -1:
        continue
        else:
        DataFrame.drop(typeArray[i], axis = 1, inplace = True)

        # Get the whole DataFrame
        df = pandas.read_csv("ExperimentResultsCondensed.csv", index_col=0)
        dfCopy = df

        # Specified metrics and models for comparison
        COI = "Area_under_PRC"
        ROI_1 = "weka.classifiers.meta.AdaBoostM1[DecisionTable]"
        ROI_2 = "weka.classifiers.meta.AdaBoostM1[DecisionStump]"

        # Lists of header and row in dataFrame
        # `rows` may act strangely
        headers = list(df.dtypes.index)
        rows = list(df.index)

        # remove irrelevant rows
        df1 = dfCopy.loc[ROI_1]
        df2 = dfCopy.loc[ROI_2]

        # remove irrelevant columns
        removeColumns(df1, headers, COI)
        removeColumns(df2, headers, COI)

        # Make CSV files
        df1.to_csv(str(ROI_1 + "-" + COI + ".csv"), index=False)
        df2.to_csv(str(ROI_2 + "-" + COI) + ".csv", index=False)

        results = pandas.DataFrame()
        # Read CSV files
        # The CSV files can be of any netric/measure, F-measure is used as an example
        results[ROI_1] = pandas.read_csv(str(ROI_1 + "-" + COI + ".csv"), header=None).values[:, 0]
        results[ROI_2] = pandas.read_csv(str(ROI_2 + "-" + COI + ".csv"), header=None).values[:, 0]

        # Kolmogorov-Smirnov test since we have Non-Gaussian, independent, distinctive variance datasets
        # Test configurations
        value, pvalue = ks_2samp(results[ROI_1], results[ROI_2])
        # Corresponding confidence level: 95%
        alpha = 0.05

        # Output the results
        print('n')
        print('33[1m' + '>>>TEST STATISTIC: ')
        print(value)
        print(">>>P-VALUE: ")
        print(pvalue)
        if pvalue > alpha:
        print('t>>Samples are likely drawn from the same distributions (fail to reject H0 - NOT SIGNIFICANT)')
        else:
        print('t>>Samples are likely drawn from different distributions (reject H0 - SIGNIFICANT)')

        # Plot files
        df1.plot.density()
        pyplot.xlabel(str(COI + " Values"))
        pyplot.ylabel(str("Density"))
        pyplot.title(str(COI + " Density Distribution of " + ROI_1))
        pyplot.show()

        df2.plot.density()
        pyplot.xlabel(str(COI + " Values"))
        pyplot.ylabel(str("Density"))
        pyplot.title(str(COI + " Density Distribution of " + ROI_2))
        pyplot.show()

        # Delete Files
        os.remove(str(ROI_1 + "-" + COI + ".csv"))
        os.remove(str(ROI_2 + "-" + COI + ".csv"))





        share|improve this answer











        $endgroup$



        This is a simple solution to my question. It only deals with two models and two variables, but you could easily have lists with the names of the classifiers and the metrics you want to analyze. For my purposes, I just change the values of COI, ROI_1, and ROI_2 respectively.



        NOTE: This solution is also generalizable.
        How? Just change the values of COI, ROI_1, and ROI_2 and load any chosen dataset in df = pandas.read_csv("FILENAME.csv, ...). If you want another visualization, just change the pyplot settings near the end.



        The key was assigning a new DataFrame to the original DataFrame and implementing the .loc["SOMESTRING"] method. It removes all the rows in the data, EXCEPT for the one specified as a parameter.



        Remember, however, to include index_col=0 when you read the file OR use some other method to set the index of the DataFrame. Without doing this, your row values will just be indexes, from 0 to MAX_INDEX.



        # Written: April 4, 2019

        import pandas # for visualizations
        from matplotlib import pyplot # for visualizations
        from scipy.stats import ks_2samp # for 2-sample Kolmogorov-Smirnov test
        import os # for deleting CSV files

        # Functions which isolates DataFrame
        def removeColumns(DataFrame, typeArray, stringOfInterest):
        for i in range(0, len(typeArray)):
        if typeArray[i].find(stringOfInterest) != -1:
        continue
        else:
        DataFrame.drop(typeArray[i], axis = 1, inplace = True)

        # Get the whole DataFrame
        df = pandas.read_csv("ExperimentResultsCondensed.csv", index_col=0)
        dfCopy = df

        # Specified metrics and models for comparison
        COI = "Area_under_PRC"
        ROI_1 = "weka.classifiers.meta.AdaBoostM1[DecisionTable]"
        ROI_2 = "weka.classifiers.meta.AdaBoostM1[DecisionStump]"

        # Lists of header and row in dataFrame
        # `rows` may act strangely
        headers = list(df.dtypes.index)
        rows = list(df.index)

        # remove irrelevant rows
        df1 = dfCopy.loc[ROI_1]
        df2 = dfCopy.loc[ROI_2]

        # remove irrelevant columns
        removeColumns(df1, headers, COI)
        removeColumns(df2, headers, COI)

        # Make CSV files
        df1.to_csv(str(ROI_1 + "-" + COI + ".csv"), index=False)
        df2.to_csv(str(ROI_2 + "-" + COI) + ".csv", index=False)

        results = pandas.DataFrame()
        # Read CSV files
        # The CSV files can be of any netric/measure, F-measure is used as an example
        results[ROI_1] = pandas.read_csv(str(ROI_1 + "-" + COI + ".csv"), header=None).values[:, 0]
        results[ROI_2] = pandas.read_csv(str(ROI_2 + "-" + COI + ".csv"), header=None).values[:, 0]

        # Kolmogorov-Smirnov test since we have Non-Gaussian, independent, distinctive variance datasets
        # Test configurations
        value, pvalue = ks_2samp(results[ROI_1], results[ROI_2])
        # Corresponding confidence level: 95%
        alpha = 0.05

        # Output the results
        print('n')
        print('33[1m' + '>>>TEST STATISTIC: ')
        print(value)
        print(">>>P-VALUE: ")
        print(pvalue)
        if pvalue > alpha:
        print('t>>Samples are likely drawn from the same distributions (fail to reject H0 - NOT SIGNIFICANT)')
        else:
        print('t>>Samples are likely drawn from different distributions (reject H0 - SIGNIFICANT)')

        # Plot files
        df1.plot.density()
        pyplot.xlabel(str(COI + " Values"))
        pyplot.ylabel(str("Density"))
        pyplot.title(str(COI + " Density Distribution of " + ROI_1))
        pyplot.show()

        df2.plot.density()
        pyplot.xlabel(str(COI + " Values"))
        pyplot.ylabel(str("Density"))
        pyplot.title(str(COI + " Density Distribution of " + ROI_2))
        pyplot.show()

        # Delete Files
        os.remove(str(ROI_1 + "-" + COI + ".csv"))
        os.remove(str(ROI_2 + "-" + COI + ".csv"))






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Apr 4 at 7:58

























        answered Apr 4 at 6:24









        Shounak RayShounak Ray

        62




        62



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Data Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48553%2fhow-to-perform-modified-t-test-for-multiple-variables-and-multiple-models-on-p%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?