InvalidArgumentError: incompatible shapes: [32,153] vs [32,5] , when using VAERetain similarity distances when using an autoencoder for dimensionality reductionGeneral unsupervised learning strategy when using convolutional autoencoder (CAE)Keras VAE example loss functionHow to set input for proper fit with lstm?What mu and sigma vector really mean in VAE?KL divergence in VAEVariational auto-encoders (VAE): why the random sample?Understanding ELBO Learning Dynamics for VAE?Using VAE with Sequence to Sequence ApproachWhy use Variational Autoencoders VAE insted of Autoencoders AE in Anomaly Detection?
Pressure inside an infinite ocean?
Can't remove one character of space in my environment
Does this article imply that Turing-Computability is not the same as "effectively computable"?
A mathematically illogical argument in the derivation of Hamilton's equation in Goldstein
Why are prions in animal diets not destroyed by the digestive system?
What was the state of the German rail system in 1944?
How long would it take for people to notice a mass disappearance?
Selecting a secure PIN for building access
Can the 歳 counter be used for architecture, furniture etc to tell its age?
Should I replace my bicycle tires if they have not been inflated in multiple years
How to give very negative feedback gracefully?
Independent, post-Brexit Scotland - would there be a hard border with England?
Why is B♯ higher than C♭ in 31-ET?
What are the differences between credential stuffing and password spraying?
What are the spoon bit of a spoon and fork bit of a fork called?
What to use instead of cling film to wrap pastry
I caught several of my students plagiarizing. Could it be my fault as a teacher?
Can there be a single technologically advance nation, in a continent full of non-technologically advance nations
Is this homebrew life-stealing melee cantrip unbalanced?
Enumerate Derangements
If I readied a spell with the trigger "When I take damage", do I have to make a constitution saving throw to avoid losing Concentration?
I need a disease
What is Shri Venkateshwara Mangalasasana stotram recited for?
I drew a randomly colored grid of points with tikz, how do I force it to remember the first grid from then on?
InvalidArgumentError: incompatible shapes: [32,153] vs [32,5] , when using VAE
Retain similarity distances when using an autoencoder for dimensionality reductionGeneral unsupervised learning strategy when using convolutional autoencoder (CAE)Keras VAE example loss functionHow to set input for proper fit with lstm?What mu and sigma vector really mean in VAE?KL divergence in VAEVariational auto-encoders (VAE): why the random sample?Understanding ELBO Learning Dynamics for VAE?Using VAE with Sequence to Sequence ApproachWhy use Variational Autoencoders VAE insted of Autoencoders AE in Anomaly Detection?
$begingroup$
I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:
InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]
# Train - Test Split
X, y = lines.eng, lines.fr
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.1)
def generate_batch(X = X_train, y = y_train, batch_size = 32):
''' Generate a batch of data '''
while True:
for j in range(0, len(X), batch_size):
encoder_input_data = np.zeros((batch_size
,max_len_eng),dtype='float32') #max_len_eng = 3
decoder_input_data = np.zeros((batch_size,
max_len_fr),dtype='float32')
#max_len_french =5
decoder_target_data = np.zeros((batch_size,max_len_fr,
num_decoder_tokens), dtype='float32')
for i, (input_text, target_text) in
enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
for t, word in enumerate(input_text.split()):
encoder_input_data[i, t] = input_token_index[word]
for t, word in enumerate(target_text.split()):
# decoder_target_data is ahead of decoder_input_data by one timestep
if t<len(target_text.split())-1:
decoder_input_data[i, t] =
target_token_index[word]
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1,
target_token_index[word]] = 1
yield([encoder_input_data, decoder_input_data],
decoder_target_data)
encoder_inputs = Input(shape=(None,))
en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
(encoder_inputs)
encoder = LSTM(50, return_state=True)
encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
encoder_states = [state_h, state_c]
""" -------- ADD VAE -------"""
latent_dim =embedding_size
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
#loss function with VAE
def vae_loss(y_true, y_pred):
""" Calculate loss = reconstruction loss + KL loss for each data in
minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
z_log_var, axis=1)
return recon + kl[:, None]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
#num_decoder_tokens = 152
final_dex= dex(decoder_inputs)
decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
decoder_outputs, _, _ =
decoder_lstm(final_dex,initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
model.summary()
train_samples = len(X_train)
val_samples = len(X_test)
batch_size = 32
epochs = 5
model.fit_generator(generator = generate_batch(X_train, y_train,
batch_size = batch_size),
steps_per_epoch = train_samples//batch_size,
epochs=epochs,
validation_data = generate_batch(X_test, y_test,
batch_size = batch_size),
validation_steps = 1)
end = time.time()
print("temp d'exec:", end-start)
I tried all solutions suggested on other posts, but no one helped me.
Thanks.
python neural-network lstm autoencoder vae
$endgroup$
add a comment |
$begingroup$
I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:
InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]
# Train - Test Split
X, y = lines.eng, lines.fr
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.1)
def generate_batch(X = X_train, y = y_train, batch_size = 32):
''' Generate a batch of data '''
while True:
for j in range(0, len(X), batch_size):
encoder_input_data = np.zeros((batch_size
,max_len_eng),dtype='float32') #max_len_eng = 3
decoder_input_data = np.zeros((batch_size,
max_len_fr),dtype='float32')
#max_len_french =5
decoder_target_data = np.zeros((batch_size,max_len_fr,
num_decoder_tokens), dtype='float32')
for i, (input_text, target_text) in
enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
for t, word in enumerate(input_text.split()):
encoder_input_data[i, t] = input_token_index[word]
for t, word in enumerate(target_text.split()):
# decoder_target_data is ahead of decoder_input_data by one timestep
if t<len(target_text.split())-1:
decoder_input_data[i, t] =
target_token_index[word]
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1,
target_token_index[word]] = 1
yield([encoder_input_data, decoder_input_data],
decoder_target_data)
encoder_inputs = Input(shape=(None,))
en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
(encoder_inputs)
encoder = LSTM(50, return_state=True)
encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
encoder_states = [state_h, state_c]
""" -------- ADD VAE -------"""
latent_dim =embedding_size
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
#loss function with VAE
def vae_loss(y_true, y_pred):
""" Calculate loss = reconstruction loss + KL loss for each data in
minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
z_log_var, axis=1)
return recon + kl[:, None]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
#num_decoder_tokens = 152
final_dex= dex(decoder_inputs)
decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
decoder_outputs, _, _ =
decoder_lstm(final_dex,initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
model.summary()
train_samples = len(X_train)
val_samples = len(X_test)
batch_size = 32
epochs = 5
model.fit_generator(generator = generate_batch(X_train, y_train,
batch_size = batch_size),
steps_per_epoch = train_samples//batch_size,
epochs=epochs,
validation_data = generate_batch(X_test, y_test,
batch_size = batch_size),
validation_steps = 1)
end = time.time()
print("temp d'exec:", end-start)
I tried all solutions suggested on other posts, but no one helped me.
Thanks.
python neural-network lstm autoencoder vae
$endgroup$
add a comment |
$begingroup$
I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:
InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]
# Train - Test Split
X, y = lines.eng, lines.fr
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.1)
def generate_batch(X = X_train, y = y_train, batch_size = 32):
''' Generate a batch of data '''
while True:
for j in range(0, len(X), batch_size):
encoder_input_data = np.zeros((batch_size
,max_len_eng),dtype='float32') #max_len_eng = 3
decoder_input_data = np.zeros((batch_size,
max_len_fr),dtype='float32')
#max_len_french =5
decoder_target_data = np.zeros((batch_size,max_len_fr,
num_decoder_tokens), dtype='float32')
for i, (input_text, target_text) in
enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
for t, word in enumerate(input_text.split()):
encoder_input_data[i, t] = input_token_index[word]
for t, word in enumerate(target_text.split()):
# decoder_target_data is ahead of decoder_input_data by one timestep
if t<len(target_text.split())-1:
decoder_input_data[i, t] =
target_token_index[word]
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1,
target_token_index[word]] = 1
yield([encoder_input_data, decoder_input_data],
decoder_target_data)
encoder_inputs = Input(shape=(None,))
en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
(encoder_inputs)
encoder = LSTM(50, return_state=True)
encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
encoder_states = [state_h, state_c]
""" -------- ADD VAE -------"""
latent_dim =embedding_size
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
#loss function with VAE
def vae_loss(y_true, y_pred):
""" Calculate loss = reconstruction loss + KL loss for each data in
minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
z_log_var, axis=1)
return recon + kl[:, None]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
#num_decoder_tokens = 152
final_dex= dex(decoder_inputs)
decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
decoder_outputs, _, _ =
decoder_lstm(final_dex,initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
model.summary()
train_samples = len(X_train)
val_samples = len(X_test)
batch_size = 32
epochs = 5
model.fit_generator(generator = generate_batch(X_train, y_train,
batch_size = batch_size),
steps_per_epoch = train_samples//batch_size,
epochs=epochs,
validation_data = generate_batch(X_test, y_test,
batch_size = batch_size),
validation_steps = 1)
end = time.time()
print("temp d'exec:", end-start)
I tried all solutions suggested on other posts, but no one helped me.
Thanks.
python neural-network lstm autoencoder vae
$endgroup$
I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:
InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]
# Train - Test Split
X, y = lines.eng, lines.fr
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.1)
def generate_batch(X = X_train, y = y_train, batch_size = 32):
''' Generate a batch of data '''
while True:
for j in range(0, len(X), batch_size):
encoder_input_data = np.zeros((batch_size
,max_len_eng),dtype='float32') #max_len_eng = 3
decoder_input_data = np.zeros((batch_size,
max_len_fr),dtype='float32')
#max_len_french =5
decoder_target_data = np.zeros((batch_size,max_len_fr,
num_decoder_tokens), dtype='float32')
for i, (input_text, target_text) in
enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
for t, word in enumerate(input_text.split()):
encoder_input_data[i, t] = input_token_index[word]
for t, word in enumerate(target_text.split()):
# decoder_target_data is ahead of decoder_input_data by one timestep
if t<len(target_text.split())-1:
decoder_input_data[i, t] =
target_token_index[word]
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1,
target_token_index[word]] = 1
yield([encoder_input_data, decoder_input_data],
decoder_target_data)
encoder_inputs = Input(shape=(None,))
en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
(encoder_inputs)
encoder = LSTM(50, return_state=True)
encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
encoder_states = [state_h, state_c]
""" -------- ADD VAE -------"""
latent_dim =embedding_size
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])
state_h= z
state_c = z
encoder_states = [state_h, state_c]
#loss function with VAE
def vae_loss(y_true, y_pred):
""" Calculate loss = reconstruction loss + KL loss for each data in
minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
z_log_var, axis=1)
return recon + kl[:, None]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
#num_decoder_tokens = 152
final_dex= dex(decoder_inputs)
decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
decoder_outputs, _, _ =
decoder_lstm(final_dex,initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
model.summary()
train_samples = len(X_train)
val_samples = len(X_test)
batch_size = 32
epochs = 5
model.fit_generator(generator = generate_batch(X_train, y_train,
batch_size = batch_size),
steps_per_epoch = train_samples//batch_size,
epochs=epochs,
validation_data = generate_batch(X_test, y_test,
batch_size = batch_size),
validation_steps = 1)
end = time.time()
print("temp d'exec:", end-start)
I tried all solutions suggested on other posts, but no one helped me.
Thanks.
python neural-network lstm autoencoder vae
python neural-network lstm autoencoder vae
asked Apr 9 at 15:04
KikioKikio
9110
9110
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48970%2finvalidargumenterror-incompatible-shapes-32-153-vs-32-5-when-using-vae%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48970%2finvalidargumenterror-incompatible-shapes-32-153-vs-32-5-when-using-vae%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown