Why Heaps' Law Equation looks so different in this NLP course?Fine-tuning NLP modelsNLP - extract sentence parts related to peopleData scraping & NLP?Common deep learning practices in NLP for text classificationWhy is this convolution equation easier to apply than it's commutative counterpart?NLP - Researches about data oriented text generationHow to extract name of objects from technical description (NLP)Nesterov Momentum update equationWhy is MLP working similar to RNN for text generation

Why is Arya visibly scared in the library in S8E3?

What is the most remote airport from the center of the city it supposedly serves?

Coefficients of linear dependency

Selecting a secure PIN for building access

Which industry am I working in? Software development or financial services?

In Avengers 1, why does Thanos need Loki?

Independent, post-Brexit Scotland - would there be a hard border with England?

Short story with physics professor who "brings back the dead" (Asimov or Bradbury?)

Why was the battle set up *outside* Winterfell?

If I readied a spell with the trigger "When I take damage", do I have to make a constitution saving throw to avoid losing Concentration?

How encryption in SQL login authentication works

What does this colon mean? It is not labeling, it is not ternary operator

What does a yield inside a yield do?

What is the name of this hexagon/pentagon polyhedron?

Automatically use long arrows in display mode

Missed the connecting flight, separate tickets on same airline - who is responsible?

Ubuntu 19.04 python 3.6 is not working

Why wasn't the Night King naked in S08E03?

Is Cola "probably the best-known" Latin word in the world? If not, which might it be?

When does a player choose the creature benefiting from Amass?

Junior developer struggles: how to communicate with management?

I need a disease

Has a commercial or military jet bi-plane ever been manufactured?

Does this article imply that Turing-Computability is not the same as "effectively computable"?



Why Heaps' Law Equation looks so different in this NLP course?


Fine-tuning NLP modelsNLP - extract sentence parts related to peopleData scraping & NLP?Common deep learning practices in NLP for text classificationWhy is this convolution equation easier to apply than it's commutative counterpart?NLP - Researches about data oriented text generationHow to extract name of objects from technical description (NLP)Nesterov Momentum update equationWhy is MLP working similar to RNN for text generation













1












$begingroup$


I'm actually not sure if this question is allowed on this community since it's more of a linguistics question than it is a data science question. I've searched extensively on the Web and have failed to find an answer and also the Linguistics Beta Stack Exchange community also doesn't seem to be able to help. If it's not allowed here please close it.



Heaps' Law basically is an empirical function that says the number of distinct words you'll find in a document grows as a function to the length of the document. The equation given in the Wikipedia link is



$$V_R(n) = Kn^beta$$



where $V_R$ is the number of distinct words in a document of size $n$, and $K$ and $beta$ are free parameters that are chosen empirically (usually $0 le K le 100$ and $0.4 le beta le 0.6$).



I'm currently following a course on Youtube called Deep Learning for NLP by Oxford University and DeepMind. There is a slide in a lecture that demonstrates Heaps' Law in a rather different way:



enter image description here



The equation given with the logarithms apparently is also Heaps' Law. The fastest growing curve is a corpus for Twitter data and the slowest is for the Wall Street Journal. Tweets usually have less structure and more spelling errors, etc. compared to the WSJ which would explain the faster-growing curve.



The main question that I had is how Heaps' Law seems to have taken on the form that the author has given? It's a bit of a reach but the author didn't specify what any of these parameters are (i.e. $C$, $alpha$, $r(w)$, $b$) and I was wondering if anybody might be familiar with Heaps' Law to give me some advise on how to solve my question.










share|improve this question











$endgroup$
















    1












    $begingroup$


    I'm actually not sure if this question is allowed on this community since it's more of a linguistics question than it is a data science question. I've searched extensively on the Web and have failed to find an answer and also the Linguistics Beta Stack Exchange community also doesn't seem to be able to help. If it's not allowed here please close it.



    Heaps' Law basically is an empirical function that says the number of distinct words you'll find in a document grows as a function to the length of the document. The equation given in the Wikipedia link is



    $$V_R(n) = Kn^beta$$



    where $V_R$ is the number of distinct words in a document of size $n$, and $K$ and $beta$ are free parameters that are chosen empirically (usually $0 le K le 100$ and $0.4 le beta le 0.6$).



    I'm currently following a course on Youtube called Deep Learning for NLP by Oxford University and DeepMind. There is a slide in a lecture that demonstrates Heaps' Law in a rather different way:



    enter image description here



    The equation given with the logarithms apparently is also Heaps' Law. The fastest growing curve is a corpus for Twitter data and the slowest is for the Wall Street Journal. Tweets usually have less structure and more spelling errors, etc. compared to the WSJ which would explain the faster-growing curve.



    The main question that I had is how Heaps' Law seems to have taken on the form that the author has given? It's a bit of a reach but the author didn't specify what any of these parameters are (i.e. $C$, $alpha$, $r(w)$, $b$) and I was wondering if anybody might be familiar with Heaps' Law to give me some advise on how to solve my question.










    share|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      I'm actually not sure if this question is allowed on this community since it's more of a linguistics question than it is a data science question. I've searched extensively on the Web and have failed to find an answer and also the Linguistics Beta Stack Exchange community also doesn't seem to be able to help. If it's not allowed here please close it.



      Heaps' Law basically is an empirical function that says the number of distinct words you'll find in a document grows as a function to the length of the document. The equation given in the Wikipedia link is



      $$V_R(n) = Kn^beta$$



      where $V_R$ is the number of distinct words in a document of size $n$, and $K$ and $beta$ are free parameters that are chosen empirically (usually $0 le K le 100$ and $0.4 le beta le 0.6$).



      I'm currently following a course on Youtube called Deep Learning for NLP by Oxford University and DeepMind. There is a slide in a lecture that demonstrates Heaps' Law in a rather different way:



      enter image description here



      The equation given with the logarithms apparently is also Heaps' Law. The fastest growing curve is a corpus for Twitter data and the slowest is for the Wall Street Journal. Tweets usually have less structure and more spelling errors, etc. compared to the WSJ which would explain the faster-growing curve.



      The main question that I had is how Heaps' Law seems to have taken on the form that the author has given? It's a bit of a reach but the author didn't specify what any of these parameters are (i.e. $C$, $alpha$, $r(w)$, $b$) and I was wondering if anybody might be familiar with Heaps' Law to give me some advise on how to solve my question.










      share|improve this question











      $endgroup$




      I'm actually not sure if this question is allowed on this community since it's more of a linguistics question than it is a data science question. I've searched extensively on the Web and have failed to find an answer and also the Linguistics Beta Stack Exchange community also doesn't seem to be able to help. If it's not allowed here please close it.



      Heaps' Law basically is an empirical function that says the number of distinct words you'll find in a document grows as a function to the length of the document. The equation given in the Wikipedia link is



      $$V_R(n) = Kn^beta$$



      where $V_R$ is the number of distinct words in a document of size $n$, and $K$ and $beta$ are free parameters that are chosen empirically (usually $0 le K le 100$ and $0.4 le beta le 0.6$).



      I'm currently following a course on Youtube called Deep Learning for NLP by Oxford University and DeepMind. There is a slide in a lecture that demonstrates Heaps' Law in a rather different way:



      enter image description here



      The equation given with the logarithms apparently is also Heaps' Law. The fastest growing curve is a corpus for Twitter data and the slowest is for the Wall Street Journal. Tweets usually have less structure and more spelling errors, etc. compared to the WSJ which would explain the faster-growing curve.



      The main question that I had is how Heaps' Law seems to have taken on the form that the author has given? It's a bit of a reach but the author didn't specify what any of these parameters are (i.e. $C$, $alpha$, $r(w)$, $b$) and I was wondering if anybody might be familiar with Heaps' Law to give me some advise on how to solve my question.







      deep-learning natural-language-process language-model






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Apr 11 at 11:21









      Esmailian

      4,129422




      4,129422










      asked Apr 9 at 15:00









      SeankalaSeankala

      1085




      1085




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The plot shows Heaps' Law but the formula is something different, it is Zipf's Law.



          $f(w)$ is the relative frequency (or probability) of word $w$. That is, given a random word, it will be $w$ with probability $f(w)$. Therefore, if a document has $n$ words, it has on average $ntimes f(w)$ occurrences of word $w$.



          The formula can be re-written as follows:
          $$f(w)=C(r(w)-b)^-alpha$$
          which is a power-law distribution that shows Zipf's Law, however with a slightly different parameterization by introducing cut-off $b$.



          1. $r(w)$ denotes the rank of word $w$. For example, if we sort all the words in a news corpus based on their frequency, $r(text'the')$ would be 1, $r(text'be')$ would be 2, and so on,


          2. Cut-off $b$ ignores highly frequent words $r(w) le b$, effectively shifting up the rank of remaining words,


          3. $C$ is the normalizing constant, i.e. $C=sum_r=left lfloor b right rfloor + 1^infty(r-b)^-alpha$, which gives $sum_w,r(w)>b f(w) = 1$, and


          4. Exponent $alpha$ denotes the rate of drop in probability when rank increases. Higher $alpha$, faster drop.


          Exponent $alpha$ is determined by fitting the formula to some corpus, as shown in the table. Generally, lower $alpha$ (in the case of twitter), thus slower drop, means corpus has more word diversity.






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48969%2fwhy-heaps-law-equation-looks-so-different-in-this-nlp-course%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            The plot shows Heaps' Law but the formula is something different, it is Zipf's Law.



            $f(w)$ is the relative frequency (or probability) of word $w$. That is, given a random word, it will be $w$ with probability $f(w)$. Therefore, if a document has $n$ words, it has on average $ntimes f(w)$ occurrences of word $w$.



            The formula can be re-written as follows:
            $$f(w)=C(r(w)-b)^-alpha$$
            which is a power-law distribution that shows Zipf's Law, however with a slightly different parameterization by introducing cut-off $b$.



            1. $r(w)$ denotes the rank of word $w$. For example, if we sort all the words in a news corpus based on their frequency, $r(text'the')$ would be 1, $r(text'be')$ would be 2, and so on,


            2. Cut-off $b$ ignores highly frequent words $r(w) le b$, effectively shifting up the rank of remaining words,


            3. $C$ is the normalizing constant, i.e. $C=sum_r=left lfloor b right rfloor + 1^infty(r-b)^-alpha$, which gives $sum_w,r(w)>b f(w) = 1$, and


            4. Exponent $alpha$ denotes the rate of drop in probability when rank increases. Higher $alpha$, faster drop.


            Exponent $alpha$ is determined by fitting the formula to some corpus, as shown in the table. Generally, lower $alpha$ (in the case of twitter), thus slower drop, means corpus has more word diversity.






            share|improve this answer









            $endgroup$

















              1












              $begingroup$

              The plot shows Heaps' Law but the formula is something different, it is Zipf's Law.



              $f(w)$ is the relative frequency (or probability) of word $w$. That is, given a random word, it will be $w$ with probability $f(w)$. Therefore, if a document has $n$ words, it has on average $ntimes f(w)$ occurrences of word $w$.



              The formula can be re-written as follows:
              $$f(w)=C(r(w)-b)^-alpha$$
              which is a power-law distribution that shows Zipf's Law, however with a slightly different parameterization by introducing cut-off $b$.



              1. $r(w)$ denotes the rank of word $w$. For example, if we sort all the words in a news corpus based on their frequency, $r(text'the')$ would be 1, $r(text'be')$ would be 2, and so on,


              2. Cut-off $b$ ignores highly frequent words $r(w) le b$, effectively shifting up the rank of remaining words,


              3. $C$ is the normalizing constant, i.e. $C=sum_r=left lfloor b right rfloor + 1^infty(r-b)^-alpha$, which gives $sum_w,r(w)>b f(w) = 1$, and


              4. Exponent $alpha$ denotes the rate of drop in probability when rank increases. Higher $alpha$, faster drop.


              Exponent $alpha$ is determined by fitting the formula to some corpus, as shown in the table. Generally, lower $alpha$ (in the case of twitter), thus slower drop, means corpus has more word diversity.






              share|improve this answer









              $endgroup$















                1












                1








                1





                $begingroup$

                The plot shows Heaps' Law but the formula is something different, it is Zipf's Law.



                $f(w)$ is the relative frequency (or probability) of word $w$. That is, given a random word, it will be $w$ with probability $f(w)$. Therefore, if a document has $n$ words, it has on average $ntimes f(w)$ occurrences of word $w$.



                The formula can be re-written as follows:
                $$f(w)=C(r(w)-b)^-alpha$$
                which is a power-law distribution that shows Zipf's Law, however with a slightly different parameterization by introducing cut-off $b$.



                1. $r(w)$ denotes the rank of word $w$. For example, if we sort all the words in a news corpus based on their frequency, $r(text'the')$ would be 1, $r(text'be')$ would be 2, and so on,


                2. Cut-off $b$ ignores highly frequent words $r(w) le b$, effectively shifting up the rank of remaining words,


                3. $C$ is the normalizing constant, i.e. $C=sum_r=left lfloor b right rfloor + 1^infty(r-b)^-alpha$, which gives $sum_w,r(w)>b f(w) = 1$, and


                4. Exponent $alpha$ denotes the rate of drop in probability when rank increases. Higher $alpha$, faster drop.


                Exponent $alpha$ is determined by fitting the formula to some corpus, as shown in the table. Generally, lower $alpha$ (in the case of twitter), thus slower drop, means corpus has more word diversity.






                share|improve this answer









                $endgroup$



                The plot shows Heaps' Law but the formula is something different, it is Zipf's Law.



                $f(w)$ is the relative frequency (or probability) of word $w$. That is, given a random word, it will be $w$ with probability $f(w)$. Therefore, if a document has $n$ words, it has on average $ntimes f(w)$ occurrences of word $w$.



                The formula can be re-written as follows:
                $$f(w)=C(r(w)-b)^-alpha$$
                which is a power-law distribution that shows Zipf's Law, however with a slightly different parameterization by introducing cut-off $b$.



                1. $r(w)$ denotes the rank of word $w$. For example, if we sort all the words in a news corpus based on their frequency, $r(text'the')$ would be 1, $r(text'be')$ would be 2, and so on,


                2. Cut-off $b$ ignores highly frequent words $r(w) le b$, effectively shifting up the rank of remaining words,


                3. $C$ is the normalizing constant, i.e. $C=sum_r=left lfloor b right rfloor + 1^infty(r-b)^-alpha$, which gives $sum_w,r(w)>b f(w) = 1$, and


                4. Exponent $alpha$ denotes the rate of drop in probability when rank increases. Higher $alpha$, faster drop.


                Exponent $alpha$ is determined by fitting the formula to some corpus, as shown in the table. Generally, lower $alpha$ (in the case of twitter), thus slower drop, means corpus has more word diversity.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Apr 9 at 17:58









                EsmailianEsmailian

                4,129422




                4,129422



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48969%2fwhy-heaps-law-equation-looks-so-different-in-this-nlp-course%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                    Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                    Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?