Fair gambler's ruin problem intuition Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Probability of Gambler's Ruin with Unequal Gain/LossAdaptive gambler's ruin problemGambler's Ruin with no set target for winGambler's ruin problem - unsure about the number of roundsEffect of Gambler's Ruin Bet Size on DurationGambler's ruin: verifying Markov propertyComparison of duration of two gambler's ruin gamesGambler's Ruin - Probability of Losing in t StepsGambler's Ruin: Win 2 dollars, Lose 1 dollarGambler's ruin Markov chain
Using et al. for a last / senior author rather than for a first author
Can anything be seen from the center of the Boötes void? How dark would it be?
Redirect to div in page with #
Selecting user stories during sprint planning
Why do we bend a book to keep it straight?
AppleTVs create a chatty alternate WiFi network
Benefits of using sObject.clone versus creating a new record
Why is it faster to reheat something than it is to cook it?
Performance gap between bool std:vector and array
Denied boarding although I have proper visa and documentation. To whom should I make a complaint?
Is it fair for a professor to grade us on the possession of past papers?
Do any jurisdictions seriously consider reclassifying social media websites as publishers?
Apply Line Pattern Fill to LineStrings?
What is the Characteristic of a local ring?
NumericArray versus PackedArray in MMA12
How do I use the new nonlinear finite element in Mathematica 12 for this equation?
How to convince students of the implication truth values?
What do you call the main part of a joke?
What are the out-of-universe reasons for the references to Toby Maguire-era Spider-Man in Into the Spider-Verse?
Should I use a zero-interest credit card for a large one-time purchase?
Is there any word for a place full of confusion?
Take 2! Is this homebrew Lady of Pain warlock patron balanced?
Employee unreasonably upset with me?
Is there hard evidence that the grant peer review system performs significantly better than random?
Fair gambler's ruin problem intuition
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Probability of Gambler's Ruin with Unequal Gain/LossAdaptive gambler's ruin problemGambler's Ruin with no set target for winGambler's ruin problem - unsure about the number of roundsEffect of Gambler's Ruin Bet Size on DurationGambler's ruin: verifying Markov propertyComparison of duration of two gambler's ruin gamesGambler's Ruin - Probability of Losing in t StepsGambler's Ruin: Win 2 dollars, Lose 1 dollarGambler's ruin Markov chain
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
$endgroup$
add a comment |
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
$endgroup$
add a comment |
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
$endgroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
probability stochastic-processes intuition
edited Apr 3 at 7:54
BSplitter
572216
572216
asked Apr 3 at 0:48
platypus17platypus17
667
667
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
edited Apr 3 at 2:54
answered Apr 3 at 1:25
John OmielanJohn Omielan
5,1992218
5,1992218
add a comment |
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
edited Apr 3 at 12:21
answered Apr 3 at 1:00
John DoeJohn Doe
12.1k11339
12.1k11339
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown