How to check If Stochastic Gradient Descent produces the optimum MSE for linear regression2019 Community Moderator ElectionStochastic gradient descent in logistic regressionStochastic gradient descent based on vector operations?Stochastic gradient descent and different approachesWhat is the stochastic part in stochastic gradient descent?Stochastic Gradient Descent BatchingImplementation of Stochastic Gradient Descent in PythonTraining Examples used in Stochastic Gradient DescentProblem with Linear Regression and Gradient DescentLinear classifier and gradient descent

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

How do I create uniquely male characters?

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

can i play a electric guitar through a bass amp?

What are these boxed doors outside store fronts in New York?

Fencing style for blades that can attack from a distance

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

Collect Fourier series terms

What's the output of a record cartridge playing an out-of-speed record

Why do falling prices hurt debtors?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

The use of multiple foreign keys on same column in SQL Server

How is it possible to have an ability score that is less than 3?

"You are your self first supporter", a more proper way to say it

How old can references or sources in a thesis be?

Adding span tags within wp_list_pages list items

Today is the Center

Smoothness of finite-dimensional functional calculus

Why not use SQL instead of GraphQL?

Why do I get two different answers for this counting problem?

Do VLANs within a subnet need to have their own subnet for router on a stick?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

What do "features" mean/refer to in this sentence?

Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.



How to check If Stochastic Gradient Descent produces the optimum MSE for linear regression



2019 Community Moderator ElectionStochastic gradient descent in logistic regressionStochastic gradient descent based on vector operations?Stochastic gradient descent and different approachesWhat is the stochastic part in stochastic gradient descent?Stochastic Gradient Descent BatchingImplementation of Stochastic Gradient Descent in PythonTraining Examples used in Stochastic Gradient DescentProblem with Linear Regression and Gradient DescentLinear classifier and gradient descent










0












$begingroup$


I am implementing SGD in linear regression .
By varying the learning rate and sample size different weight vectors are produced. These produce different MSE that are far apart. Is it possible to produce an MSE as close to the one produced by SGDRegressor by the code below.



 def SGDProcess(self,niter, npts):
self.num_iter = niter
self.no_of_pts = npts
self.w_prev = self.w_0
#self.w_prev = [1,2,3,4,5,6,7,8,9,10,11,12,13]
self.intcpt_prev = self.intcept
for i in range(0,self.num_iter):
w_diff = []
self.generaterandomsample()
num_feat = self.w_0.shape[0]
num_rows = self.x_sgdt.shape[0]
self.w_next = np.zeros(num_feat)
self.partial_w = np.zeros((num_rows,num_feat))
yerror = np.zeros(num_rows)
pred = np.zeros(num_rows)
self.intcpt_next = 0.0
#print(num_feat,num_rows)
for j in range(0,num_rows):
for k in range(0,num_feat):
#self.w_next[j] += (-2 * self.x_sgdt[k,j])*(self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev))
#self.intcpt_next += (-2 * (self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev)))
#self.partial_w[j] += ((-2 * self.x_sgdt[j,k])*((self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev))))
#self.partial_intcpt += (-2 * (self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev)))
pred[j] += (self.w_prev[k]*self.x_sgdt[j,k] )

pred[j] += self.intcpt_prev
yerror[j]=self.y_sgdt[j] - pred[j]
for k in range(0,num_feat):
self.partial_w[j][k] = (-2 * self.x_sgdt[j,k])*yerror[j]
self.intcpt_next += (-2 * yerror[j])
#print(self.partial_w)
for col in range(0,num_feat):
for row in range(0,num_rows):
self.w_next[col] += (self.learning_rate / num_rows) * self.partial_w[row][col]

self.intcpt_next = (self.learning_rate / num_rows) * self.intcpt_next

self.w_next = self.w_prev - self.w_next

w_diff = (self.w_prev - self.w_next)

#print("pred",pred,"n error",yerror)
#print("nprev",i, self.w_prev,"n w_next",self.w_next,"n intcpt",self.intcpt_next,"n diff",w_diff)

if self.checkallval(w_diff):
print('SOLUTION CONVERGED')
self.w_opt = self.w_next
self.intcpt_opt = self.intcpt_next
break
else:
self.w_prev = self.w_next
self.intcpt_prev = self.intcpt_next
self.learning_rate = (self.learning_rate) /2


#for a in range(0,num_rows):
# print('act',self.y_sgdt[a],'pred',self.partial_w[a],'err',yerror[a])
#print(len(yerror))

self.w_opt = self.w_next
self.intcpt_opt = self.intcpt_next

return [self.w_next, self.intcpt_next,self.learning_rate]


#get random k points from the datset for SGD
def generaterandomsample(self):
self.x_sgdt = (self.x_sgdt_df.sample(self.no_of_pts)).values
self.y_sgdt = (self.y_sgdt_df.sample(self.no_of_pts)).values
#print(self.x_sgdt, self.y_sgdt)
scaler = preprocessing.StandardScaler().fit(self.x_sgdt)
self.x_sgdt = scaler.transform(self.x_sgdt)

def checkallval(self,wdiff):
j= 0
k= 0
for i in range(0,len(wdiff)):
if (self.w_prev[i] - self.w_next[i]) <= 0.0000001:
#print("diff less than 0.00001n")
j+=1
elif (self.w_prev[i] - self.w_next[i]) > 0.0000001:
#print("diff greater than 0.00001n")
j-=1

if j==len(wdiff):
return True
else:
return False


regards
jana










share|improve this question









$endgroup$
















    0












    $begingroup$


    I am implementing SGD in linear regression .
    By varying the learning rate and sample size different weight vectors are produced. These produce different MSE that are far apart. Is it possible to produce an MSE as close to the one produced by SGDRegressor by the code below.



     def SGDProcess(self,niter, npts):
    self.num_iter = niter
    self.no_of_pts = npts
    self.w_prev = self.w_0
    #self.w_prev = [1,2,3,4,5,6,7,8,9,10,11,12,13]
    self.intcpt_prev = self.intcept
    for i in range(0,self.num_iter):
    w_diff = []
    self.generaterandomsample()
    num_feat = self.w_0.shape[0]
    num_rows = self.x_sgdt.shape[0]
    self.w_next = np.zeros(num_feat)
    self.partial_w = np.zeros((num_rows,num_feat))
    yerror = np.zeros(num_rows)
    pred = np.zeros(num_rows)
    self.intcpt_next = 0.0
    #print(num_feat,num_rows)
    for j in range(0,num_rows):
    for k in range(0,num_feat):
    #self.w_next[j] += (-2 * self.x_sgdt[k,j])*(self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev))
    #self.intcpt_next += (-2 * (self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev)))
    #self.partial_w[j] += ((-2 * self.x_sgdt[j,k])*((self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev))))
    #self.partial_intcpt += (-2 * (self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev)))
    pred[j] += (self.w_prev[k]*self.x_sgdt[j,k] )

    pred[j] += self.intcpt_prev
    yerror[j]=self.y_sgdt[j] - pred[j]
    for k in range(0,num_feat):
    self.partial_w[j][k] = (-2 * self.x_sgdt[j,k])*yerror[j]
    self.intcpt_next += (-2 * yerror[j])
    #print(self.partial_w)
    for col in range(0,num_feat):
    for row in range(0,num_rows):
    self.w_next[col] += (self.learning_rate / num_rows) * self.partial_w[row][col]

    self.intcpt_next = (self.learning_rate / num_rows) * self.intcpt_next

    self.w_next = self.w_prev - self.w_next

    w_diff = (self.w_prev - self.w_next)

    #print("pred",pred,"n error",yerror)
    #print("nprev",i, self.w_prev,"n w_next",self.w_next,"n intcpt",self.intcpt_next,"n diff",w_diff)

    if self.checkallval(w_diff):
    print('SOLUTION CONVERGED')
    self.w_opt = self.w_next
    self.intcpt_opt = self.intcpt_next
    break
    else:
    self.w_prev = self.w_next
    self.intcpt_prev = self.intcpt_next
    self.learning_rate = (self.learning_rate) /2


    #for a in range(0,num_rows):
    # print('act',self.y_sgdt[a],'pred',self.partial_w[a],'err',yerror[a])
    #print(len(yerror))

    self.w_opt = self.w_next
    self.intcpt_opt = self.intcpt_next

    return [self.w_next, self.intcpt_next,self.learning_rate]


    #get random k points from the datset for SGD
    def generaterandomsample(self):
    self.x_sgdt = (self.x_sgdt_df.sample(self.no_of_pts)).values
    self.y_sgdt = (self.y_sgdt_df.sample(self.no_of_pts)).values
    #print(self.x_sgdt, self.y_sgdt)
    scaler = preprocessing.StandardScaler().fit(self.x_sgdt)
    self.x_sgdt = scaler.transform(self.x_sgdt)

    def checkallval(self,wdiff):
    j= 0
    k= 0
    for i in range(0,len(wdiff)):
    if (self.w_prev[i] - self.w_next[i]) <= 0.0000001:
    #print("diff less than 0.00001n")
    j+=1
    elif (self.w_prev[i] - self.w_next[i]) > 0.0000001:
    #print("diff greater than 0.00001n")
    j-=1

    if j==len(wdiff):
    return True
    else:
    return False


    regards
    jana










    share|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      I am implementing SGD in linear regression .
      By varying the learning rate and sample size different weight vectors are produced. These produce different MSE that are far apart. Is it possible to produce an MSE as close to the one produced by SGDRegressor by the code below.



       def SGDProcess(self,niter, npts):
      self.num_iter = niter
      self.no_of_pts = npts
      self.w_prev = self.w_0
      #self.w_prev = [1,2,3,4,5,6,7,8,9,10,11,12,13]
      self.intcpt_prev = self.intcept
      for i in range(0,self.num_iter):
      w_diff = []
      self.generaterandomsample()
      num_feat = self.w_0.shape[0]
      num_rows = self.x_sgdt.shape[0]
      self.w_next = np.zeros(num_feat)
      self.partial_w = np.zeros((num_rows,num_feat))
      yerror = np.zeros(num_rows)
      pred = np.zeros(num_rows)
      self.intcpt_next = 0.0
      #print(num_feat,num_rows)
      for j in range(0,num_rows):
      for k in range(0,num_feat):
      #self.w_next[j] += (-2 * self.x_sgdt[k,j])*(self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev))
      #self.intcpt_next += (-2 * (self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev)))
      #self.partial_w[j] += ((-2 * self.x_sgdt[j,k])*((self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev))))
      #self.partial_intcpt += (-2 * (self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev)))
      pred[j] += (self.w_prev[k]*self.x_sgdt[j,k] )

      pred[j] += self.intcpt_prev
      yerror[j]=self.y_sgdt[j] - pred[j]
      for k in range(0,num_feat):
      self.partial_w[j][k] = (-2 * self.x_sgdt[j,k])*yerror[j]
      self.intcpt_next += (-2 * yerror[j])
      #print(self.partial_w)
      for col in range(0,num_feat):
      for row in range(0,num_rows):
      self.w_next[col] += (self.learning_rate / num_rows) * self.partial_w[row][col]

      self.intcpt_next = (self.learning_rate / num_rows) * self.intcpt_next

      self.w_next = self.w_prev - self.w_next

      w_diff = (self.w_prev - self.w_next)

      #print("pred",pred,"n error",yerror)
      #print("nprev",i, self.w_prev,"n w_next",self.w_next,"n intcpt",self.intcpt_next,"n diff",w_diff)

      if self.checkallval(w_diff):
      print('SOLUTION CONVERGED')
      self.w_opt = self.w_next
      self.intcpt_opt = self.intcpt_next
      break
      else:
      self.w_prev = self.w_next
      self.intcpt_prev = self.intcpt_next
      self.learning_rate = (self.learning_rate) /2


      #for a in range(0,num_rows):
      # print('act',self.y_sgdt[a],'pred',self.partial_w[a],'err',yerror[a])
      #print(len(yerror))

      self.w_opt = self.w_next
      self.intcpt_opt = self.intcpt_next

      return [self.w_next, self.intcpt_next,self.learning_rate]


      #get random k points from the datset for SGD
      def generaterandomsample(self):
      self.x_sgdt = (self.x_sgdt_df.sample(self.no_of_pts)).values
      self.y_sgdt = (self.y_sgdt_df.sample(self.no_of_pts)).values
      #print(self.x_sgdt, self.y_sgdt)
      scaler = preprocessing.StandardScaler().fit(self.x_sgdt)
      self.x_sgdt = scaler.transform(self.x_sgdt)

      def checkallval(self,wdiff):
      j= 0
      k= 0
      for i in range(0,len(wdiff)):
      if (self.w_prev[i] - self.w_next[i]) <= 0.0000001:
      #print("diff less than 0.00001n")
      j+=1
      elif (self.w_prev[i] - self.w_next[i]) > 0.0000001:
      #print("diff greater than 0.00001n")
      j-=1

      if j==len(wdiff):
      return True
      else:
      return False


      regards
      jana










      share|improve this question









      $endgroup$




      I am implementing SGD in linear regression .
      By varying the learning rate and sample size different weight vectors are produced. These produce different MSE that are far apart. Is it possible to produce an MSE as close to the one produced by SGDRegressor by the code below.



       def SGDProcess(self,niter, npts):
      self.num_iter = niter
      self.no_of_pts = npts
      self.w_prev = self.w_0
      #self.w_prev = [1,2,3,4,5,6,7,8,9,10,11,12,13]
      self.intcpt_prev = self.intcept
      for i in range(0,self.num_iter):
      w_diff = []
      self.generaterandomsample()
      num_feat = self.w_0.shape[0]
      num_rows = self.x_sgdt.shape[0]
      self.w_next = np.zeros(num_feat)
      self.partial_w = np.zeros((num_rows,num_feat))
      yerror = np.zeros(num_rows)
      pred = np.zeros(num_rows)
      self.intcpt_next = 0.0
      #print(num_feat,num_rows)
      for j in range(0,num_rows):
      for k in range(0,num_feat):
      #self.w_next[j] += (-2 * self.x_sgdt[k,j])*(self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev))
      #self.intcpt_next += (-2 * (self.learning_rate*(self.y_sgdt[k]- self.w_prev[j]*self.x_sgdt[k,j] - self.intcpt_prev)))
      #self.partial_w[j] += ((-2 * self.x_sgdt[j,k])*((self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev))))
      #self.partial_intcpt += (-2 * (self.y_sgdt[j]- (self.w_prev[k]*self.x_sgdt[j,k] - self.intcpt_prev)))
      pred[j] += (self.w_prev[k]*self.x_sgdt[j,k] )

      pred[j] += self.intcpt_prev
      yerror[j]=self.y_sgdt[j] - pred[j]
      for k in range(0,num_feat):
      self.partial_w[j][k] = (-2 * self.x_sgdt[j,k])*yerror[j]
      self.intcpt_next += (-2 * yerror[j])
      #print(self.partial_w)
      for col in range(0,num_feat):
      for row in range(0,num_rows):
      self.w_next[col] += (self.learning_rate / num_rows) * self.partial_w[row][col]

      self.intcpt_next = (self.learning_rate / num_rows) * self.intcpt_next

      self.w_next = self.w_prev - self.w_next

      w_diff = (self.w_prev - self.w_next)

      #print("pred",pred,"n error",yerror)
      #print("nprev",i, self.w_prev,"n w_next",self.w_next,"n intcpt",self.intcpt_next,"n diff",w_diff)

      if self.checkallval(w_diff):
      print('SOLUTION CONVERGED')
      self.w_opt = self.w_next
      self.intcpt_opt = self.intcpt_next
      break
      else:
      self.w_prev = self.w_next
      self.intcpt_prev = self.intcpt_next
      self.learning_rate = (self.learning_rate) /2


      #for a in range(0,num_rows):
      # print('act',self.y_sgdt[a],'pred',self.partial_w[a],'err',yerror[a])
      #print(len(yerror))

      self.w_opt = self.w_next
      self.intcpt_opt = self.intcpt_next

      return [self.w_next, self.intcpt_next,self.learning_rate]


      #get random k points from the datset for SGD
      def generaterandomsample(self):
      self.x_sgdt = (self.x_sgdt_df.sample(self.no_of_pts)).values
      self.y_sgdt = (self.y_sgdt_df.sample(self.no_of_pts)).values
      #print(self.x_sgdt, self.y_sgdt)
      scaler = preprocessing.StandardScaler().fit(self.x_sgdt)
      self.x_sgdt = scaler.transform(self.x_sgdt)

      def checkallval(self,wdiff):
      j= 0
      k= 0
      for i in range(0,len(wdiff)):
      if (self.w_prev[i] - self.w_next[i]) <= 0.0000001:
      #print("diff less than 0.00001n")
      j+=1
      elif (self.w_prev[i] - self.w_next[i]) > 0.0000001:
      #print("diff greater than 0.00001n")
      j-=1

      if j==len(wdiff):
      return True
      else:
      return False


      regards
      jana







      gradient-descent






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Mar 27 at 14:23









      megjoshmegjosh

      11




      11




















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48089%2fhow-to-check-if-stochastic-gradient-descent-produces-the-optimum-mse-for-linear%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48089%2fhow-to-check-if-stochastic-gradient-descent-produces-the-optimum-mse-for-linear%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?