Pre-amplifier input protection50 volts regulated power supplyAmplifiers: IC selection and determining its correct valuesMSP430 Low Voltage ADC Input ProtectionLimiting small signals to one direction (ideally with passive components)Designing a safe Amplifier to drive Sound Card Mic InputHow are the resistor values R1 and R2 calculated for a transistor amplifier that has a voltage divider biasSoft diode clipping for 'controlling' amplifier levels and avoiding harsh distortionSome questions regarding input stage of audio signals to the pre-amplifierCrossover distortion returns when load is appliedIs the ESD and overvoltage protection for my ADC circuit sufficient?

How does strength of boric acid solution increase in presence of salicylic acid?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Can divisibility rules for digits be generalized to sum of digits

Did Shadowfax go to Valinor?

Why don't electron-positron collisions release infinite energy?

The use of multiple foreign keys on same column in SQL Server

How can bays and straits be determined in a procedurally generated map?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Mathematical cryptic clues

What do you call a Matrix-like slowdown and camera movement effect?

What is the word for reserving something for yourself before others do?

Why, historically, did Gödel think CH was false?

Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.

Today is the Center

Which models of the Boeing 737 are still in production?

Prove that NP is closed under karp reduction?

How to find program name(s) of an installed package?

Mage Armor with Defense fighting style (for Adventurers League bladeslinger)

How do I create uniquely male characters?

Font hinting is lost in Chrome-like browsers (for some languages )

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

Writing rule stating superpower from different root cause is bad writing

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?



Pre-amplifier input protection


50 volts regulated power supplyAmplifiers: IC selection and determining its correct valuesMSP430 Low Voltage ADC Input ProtectionLimiting small signals to one direction (ideally with passive components)Designing a safe Amplifier to drive Sound Card Mic InputHow are the resistor values R1 and R2 calculated for a transistor amplifier that has a voltage divider biasSoft diode clipping for 'controlling' amplifier levels and avoiding harsh distortionSome questions regarding input stage of audio signals to the pre-amplifierCrossover distortion returns when load is appliedIs the ESD and overvoltage protection for my ADC circuit sufficient?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I am building the Velleman K1803 pre-amplifier kit. This amplifier has a maximum input signal of 40mv. The audio input to the pre-amplifier will be a piezo-electric sensor, and this can certainly exceed the specified maximum.



I believe that the input can be protected with a pair of diodes, but there is a huge range of diodes available.



It is some time since I have done any electronics, and so far my searches have not resulted in a suitable circuit design which could achieve the protection at the low signal voltage specified. For the record, the input is audio in the range 20Hz to 20kHz, and could possibly lie in the range +/- 0.5V.



I would appreciate some guidance on where to look for a suitable diode and circuit. I can of course supply a circuit diagram of the amplifier if needed



Added:



Following @DrMoishePippik comments on back-to-back schottky diodes, the lowest switch-on voltage I have found is 0.33 to 0.45 for the BAT43 small signal Schottky diode.










share|improve this question











$endgroup$







  • 3




    $begingroup$
    Normally you would clamp to the maximum that the input can take, not the expected maximum of the signal source. It is likely that the 40mV maximum is the maximum that the amp can take and still work properly...but you're not worried about that. You're worried about the maximum it can take and not have damage occur. There's a difference. You can either use a TVS diode that clamp in reverse-breakdown or "regular" sufficiently fast diodes that clamp in forward bias to clamp the voltage to the rail supply (but this requires a rail supply to be present).
    $endgroup$
    – Toor
    Mar 27 at 22:55







  • 2




    $begingroup$
    The maximum input is specified as 40mV because the gain is up to 100 and the minimum Vcc is specified as 10V, giving you 5V peak output, or 3.5VRMS, so 40mVRMS roughly defines a clipping point rather than the damage point. A much larger input won't damage the first op-amp, up to at least the voltage rail.
    $endgroup$
    – user207421
    Mar 28 at 2:40










  • $begingroup$
    Thank you for clarifying the reason for the low maximum input. If I have read the data sheet for the LM358 correctly, it confirms that the maximum input signal voltage range is -0.3 to +32 volt.
    $endgroup$
    – Geoff
    Mar 29 at 13:21

















2












$begingroup$


I am building the Velleman K1803 pre-amplifier kit. This amplifier has a maximum input signal of 40mv. The audio input to the pre-amplifier will be a piezo-electric sensor, and this can certainly exceed the specified maximum.



I believe that the input can be protected with a pair of diodes, but there is a huge range of diodes available.



It is some time since I have done any electronics, and so far my searches have not resulted in a suitable circuit design which could achieve the protection at the low signal voltage specified. For the record, the input is audio in the range 20Hz to 20kHz, and could possibly lie in the range +/- 0.5V.



I would appreciate some guidance on where to look for a suitable diode and circuit. I can of course supply a circuit diagram of the amplifier if needed



Added:



Following @DrMoishePippik comments on back-to-back schottky diodes, the lowest switch-on voltage I have found is 0.33 to 0.45 for the BAT43 small signal Schottky diode.










share|improve this question











$endgroup$







  • 3




    $begingroup$
    Normally you would clamp to the maximum that the input can take, not the expected maximum of the signal source. It is likely that the 40mV maximum is the maximum that the amp can take and still work properly...but you're not worried about that. You're worried about the maximum it can take and not have damage occur. There's a difference. You can either use a TVS diode that clamp in reverse-breakdown or "regular" sufficiently fast diodes that clamp in forward bias to clamp the voltage to the rail supply (but this requires a rail supply to be present).
    $endgroup$
    – Toor
    Mar 27 at 22:55







  • 2




    $begingroup$
    The maximum input is specified as 40mV because the gain is up to 100 and the minimum Vcc is specified as 10V, giving you 5V peak output, or 3.5VRMS, so 40mVRMS roughly defines a clipping point rather than the damage point. A much larger input won't damage the first op-amp, up to at least the voltage rail.
    $endgroup$
    – user207421
    Mar 28 at 2:40










  • $begingroup$
    Thank you for clarifying the reason for the low maximum input. If I have read the data sheet for the LM358 correctly, it confirms that the maximum input signal voltage range is -0.3 to +32 volt.
    $endgroup$
    – Geoff
    Mar 29 at 13:21













2












2








2





$begingroup$


I am building the Velleman K1803 pre-amplifier kit. This amplifier has a maximum input signal of 40mv. The audio input to the pre-amplifier will be a piezo-electric sensor, and this can certainly exceed the specified maximum.



I believe that the input can be protected with a pair of diodes, but there is a huge range of diodes available.



It is some time since I have done any electronics, and so far my searches have not resulted in a suitable circuit design which could achieve the protection at the low signal voltage specified. For the record, the input is audio in the range 20Hz to 20kHz, and could possibly lie in the range +/- 0.5V.



I would appreciate some guidance on where to look for a suitable diode and circuit. I can of course supply a circuit diagram of the amplifier if needed



Added:



Following @DrMoishePippik comments on back-to-back schottky diodes, the lowest switch-on voltage I have found is 0.33 to 0.45 for the BAT43 small signal Schottky diode.










share|improve this question











$endgroup$




I am building the Velleman K1803 pre-amplifier kit. This amplifier has a maximum input signal of 40mv. The audio input to the pre-amplifier will be a piezo-electric sensor, and this can certainly exceed the specified maximum.



I believe that the input can be protected with a pair of diodes, but there is a huge range of diodes available.



It is some time since I have done any electronics, and so far my searches have not resulted in a suitable circuit design which could achieve the protection at the low signal voltage specified. For the record, the input is audio in the range 20Hz to 20kHz, and could possibly lie in the range +/- 0.5V.



I would appreciate some guidance on where to look for a suitable diode and circuit. I can of course supply a circuit diagram of the amplifier if needed



Added:



Following @DrMoishePippik comments on back-to-back schottky diodes, the lowest switch-on voltage I have found is 0.33 to 0.45 for the BAT43 small signal Schottky diode.







amplifier audio diodes protection






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 29 at 14:05







Geoff

















asked Mar 27 at 22:38









GeoffGeoff

112




112







  • 3




    $begingroup$
    Normally you would clamp to the maximum that the input can take, not the expected maximum of the signal source. It is likely that the 40mV maximum is the maximum that the amp can take and still work properly...but you're not worried about that. You're worried about the maximum it can take and not have damage occur. There's a difference. You can either use a TVS diode that clamp in reverse-breakdown or "regular" sufficiently fast diodes that clamp in forward bias to clamp the voltage to the rail supply (but this requires a rail supply to be present).
    $endgroup$
    – Toor
    Mar 27 at 22:55







  • 2




    $begingroup$
    The maximum input is specified as 40mV because the gain is up to 100 and the minimum Vcc is specified as 10V, giving you 5V peak output, or 3.5VRMS, so 40mVRMS roughly defines a clipping point rather than the damage point. A much larger input won't damage the first op-amp, up to at least the voltage rail.
    $endgroup$
    – user207421
    Mar 28 at 2:40










  • $begingroup$
    Thank you for clarifying the reason for the low maximum input. If I have read the data sheet for the LM358 correctly, it confirms that the maximum input signal voltage range is -0.3 to +32 volt.
    $endgroup$
    – Geoff
    Mar 29 at 13:21












  • 3




    $begingroup$
    Normally you would clamp to the maximum that the input can take, not the expected maximum of the signal source. It is likely that the 40mV maximum is the maximum that the amp can take and still work properly...but you're not worried about that. You're worried about the maximum it can take and not have damage occur. There's a difference. You can either use a TVS diode that clamp in reverse-breakdown or "regular" sufficiently fast diodes that clamp in forward bias to clamp the voltage to the rail supply (but this requires a rail supply to be present).
    $endgroup$
    – Toor
    Mar 27 at 22:55







  • 2




    $begingroup$
    The maximum input is specified as 40mV because the gain is up to 100 and the minimum Vcc is specified as 10V, giving you 5V peak output, or 3.5VRMS, so 40mVRMS roughly defines a clipping point rather than the damage point. A much larger input won't damage the first op-amp, up to at least the voltage rail.
    $endgroup$
    – user207421
    Mar 28 at 2:40










  • $begingroup$
    Thank you for clarifying the reason for the low maximum input. If I have read the data sheet for the LM358 correctly, it confirms that the maximum input signal voltage range is -0.3 to +32 volt.
    $endgroup$
    – Geoff
    Mar 29 at 13:21







3




3




$begingroup$
Normally you would clamp to the maximum that the input can take, not the expected maximum of the signal source. It is likely that the 40mV maximum is the maximum that the amp can take and still work properly...but you're not worried about that. You're worried about the maximum it can take and not have damage occur. There's a difference. You can either use a TVS diode that clamp in reverse-breakdown or "regular" sufficiently fast diodes that clamp in forward bias to clamp the voltage to the rail supply (but this requires a rail supply to be present).
$endgroup$
– Toor
Mar 27 at 22:55





$begingroup$
Normally you would clamp to the maximum that the input can take, not the expected maximum of the signal source. It is likely that the 40mV maximum is the maximum that the amp can take and still work properly...but you're not worried about that. You're worried about the maximum it can take and not have damage occur. There's a difference. You can either use a TVS diode that clamp in reverse-breakdown or "regular" sufficiently fast diodes that clamp in forward bias to clamp the voltage to the rail supply (but this requires a rail supply to be present).
$endgroup$
– Toor
Mar 27 at 22:55





2




2




$begingroup$
The maximum input is specified as 40mV because the gain is up to 100 and the minimum Vcc is specified as 10V, giving you 5V peak output, or 3.5VRMS, so 40mVRMS roughly defines a clipping point rather than the damage point. A much larger input won't damage the first op-amp, up to at least the voltage rail.
$endgroup$
– user207421
Mar 28 at 2:40




$begingroup$
The maximum input is specified as 40mV because the gain is up to 100 and the minimum Vcc is specified as 10V, giving you 5V peak output, or 3.5VRMS, so 40mVRMS roughly defines a clipping point rather than the damage point. A much larger input won't damage the first op-amp, up to at least the voltage rail.
$endgroup$
– user207421
Mar 28 at 2:40












$begingroup$
Thank you for clarifying the reason for the low maximum input. If I have read the data sheet for the LM358 correctly, it confirms that the maximum input signal voltage range is -0.3 to +32 volt.
$endgroup$
– Geoff
Mar 29 at 13:21




$begingroup$
Thank you for clarifying the reason for the low maximum input. If I have read the data sheet for the LM358 correctly, it confirms that the maximum input signal voltage range is -0.3 to +32 volt.
$endgroup$
– Geoff
Mar 29 at 13:21










2 Answers
2






active

oldest

votes


















4












$begingroup$

Just change one of the feedback resistors to have less gain so it can accept larger input voltages without clipping.






share|improve this answer









$endgroup$




















    3












    $begingroup$

    A pair of inexpensive back-to-back silicon diodes across the input lines should be sufficient to limit input to 600 mV. Germanium diodes or Schottky diodes would keep the voltage lower yet, but they're generally more fragile and/or more expensive than ordinary Si iodes. Since the specifications limit response to 20 kHz, even Si rectifier diodes should not degrade performance noticeably.



    Though the maximum rated signal for the Velleman K1803 is 40 mV, there is no DC path from input to IC1a, below, so a transient 600 mV should do no harm.



    Velleman K1803 schematic from https://www.velleman.eu/downloads/0/illustrated/illustrated_assembly_manual_k1803_rev2.pdf






    share|improve this answer









    $endgroup$








    • 1




      $begingroup$
      R2 puts a severe limit on transient current into the IC anyways. Not sure the OP has a transient problem to fix. Reducing R5 to reduce gain may be a better choice.
      $endgroup$
      – Sparky256
      Mar 28 at 1:07










    • $begingroup$
      reducing R5 may cause oscillation; that OA is already at unity gain.
      $endgroup$
      – analogsystemsrf
      Mar 28 at 3:35










    • $begingroup$
      At max (100X) gain, this "preamp" will have 40nanoVolts/rtHz * sqrt(20,000Hz) * sqrt(2 res of 100K) * pi/2 * Av = 220/2.2 == 15uVrms * 100 = 1.5 milliVolts rms random noise, provided by R2 and R5.
      $endgroup$
      – analogsystemsrf
      Mar 28 at 3:39











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429404%2fpre-amplifier-input-protection%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Just change one of the feedback resistors to have less gain so it can accept larger input voltages without clipping.






    share|improve this answer









    $endgroup$

















      4












      $begingroup$

      Just change one of the feedback resistors to have less gain so it can accept larger input voltages without clipping.






      share|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Just change one of the feedback resistors to have less gain so it can accept larger input voltages without clipping.






        share|improve this answer









        $endgroup$



        Just change one of the feedback resistors to have less gain so it can accept larger input voltages without clipping.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Mar 28 at 0:35









        JustmeJustme

        2,1531413




        2,1531413























            3












            $begingroup$

            A pair of inexpensive back-to-back silicon diodes across the input lines should be sufficient to limit input to 600 mV. Germanium diodes or Schottky diodes would keep the voltage lower yet, but they're generally more fragile and/or more expensive than ordinary Si iodes. Since the specifications limit response to 20 kHz, even Si rectifier diodes should not degrade performance noticeably.



            Though the maximum rated signal for the Velleman K1803 is 40 mV, there is no DC path from input to IC1a, below, so a transient 600 mV should do no harm.



            Velleman K1803 schematic from https://www.velleman.eu/downloads/0/illustrated/illustrated_assembly_manual_k1803_rev2.pdf






            share|improve this answer









            $endgroup$








            • 1




              $begingroup$
              R2 puts a severe limit on transient current into the IC anyways. Not sure the OP has a transient problem to fix. Reducing R5 to reduce gain may be a better choice.
              $endgroup$
              – Sparky256
              Mar 28 at 1:07










            • $begingroup$
              reducing R5 may cause oscillation; that OA is already at unity gain.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:35










            • $begingroup$
              At max (100X) gain, this "preamp" will have 40nanoVolts/rtHz * sqrt(20,000Hz) * sqrt(2 res of 100K) * pi/2 * Av = 220/2.2 == 15uVrms * 100 = 1.5 milliVolts rms random noise, provided by R2 and R5.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:39















            3












            $begingroup$

            A pair of inexpensive back-to-back silicon diodes across the input lines should be sufficient to limit input to 600 mV. Germanium diodes or Schottky diodes would keep the voltage lower yet, but they're generally more fragile and/or more expensive than ordinary Si iodes. Since the specifications limit response to 20 kHz, even Si rectifier diodes should not degrade performance noticeably.



            Though the maximum rated signal for the Velleman K1803 is 40 mV, there is no DC path from input to IC1a, below, so a transient 600 mV should do no harm.



            Velleman K1803 schematic from https://www.velleman.eu/downloads/0/illustrated/illustrated_assembly_manual_k1803_rev2.pdf






            share|improve this answer









            $endgroup$








            • 1




              $begingroup$
              R2 puts a severe limit on transient current into the IC anyways. Not sure the OP has a transient problem to fix. Reducing R5 to reduce gain may be a better choice.
              $endgroup$
              – Sparky256
              Mar 28 at 1:07










            • $begingroup$
              reducing R5 may cause oscillation; that OA is already at unity gain.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:35










            • $begingroup$
              At max (100X) gain, this "preamp" will have 40nanoVolts/rtHz * sqrt(20,000Hz) * sqrt(2 res of 100K) * pi/2 * Av = 220/2.2 == 15uVrms * 100 = 1.5 milliVolts rms random noise, provided by R2 and R5.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:39













            3












            3








            3





            $begingroup$

            A pair of inexpensive back-to-back silicon diodes across the input lines should be sufficient to limit input to 600 mV. Germanium diodes or Schottky diodes would keep the voltage lower yet, but they're generally more fragile and/or more expensive than ordinary Si iodes. Since the specifications limit response to 20 kHz, even Si rectifier diodes should not degrade performance noticeably.



            Though the maximum rated signal for the Velleman K1803 is 40 mV, there is no DC path from input to IC1a, below, so a transient 600 mV should do no harm.



            Velleman K1803 schematic from https://www.velleman.eu/downloads/0/illustrated/illustrated_assembly_manual_k1803_rev2.pdf






            share|improve this answer









            $endgroup$



            A pair of inexpensive back-to-back silicon diodes across the input lines should be sufficient to limit input to 600 mV. Germanium diodes or Schottky diodes would keep the voltage lower yet, but they're generally more fragile and/or more expensive than ordinary Si iodes. Since the specifications limit response to 20 kHz, even Si rectifier diodes should not degrade performance noticeably.



            Though the maximum rated signal for the Velleman K1803 is 40 mV, there is no DC path from input to IC1a, below, so a transient 600 mV should do no harm.



            Velleman K1803 schematic from https://www.velleman.eu/downloads/0/illustrated/illustrated_assembly_manual_k1803_rev2.pdf







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Mar 27 at 23:32









            DrMoishe PippikDrMoishe Pippik

            8967




            8967







            • 1




              $begingroup$
              R2 puts a severe limit on transient current into the IC anyways. Not sure the OP has a transient problem to fix. Reducing R5 to reduce gain may be a better choice.
              $endgroup$
              – Sparky256
              Mar 28 at 1:07










            • $begingroup$
              reducing R5 may cause oscillation; that OA is already at unity gain.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:35










            • $begingroup$
              At max (100X) gain, this "preamp" will have 40nanoVolts/rtHz * sqrt(20,000Hz) * sqrt(2 res of 100K) * pi/2 * Av = 220/2.2 == 15uVrms * 100 = 1.5 milliVolts rms random noise, provided by R2 and R5.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:39












            • 1




              $begingroup$
              R2 puts a severe limit on transient current into the IC anyways. Not sure the OP has a transient problem to fix. Reducing R5 to reduce gain may be a better choice.
              $endgroup$
              – Sparky256
              Mar 28 at 1:07










            • $begingroup$
              reducing R5 may cause oscillation; that OA is already at unity gain.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:35










            • $begingroup$
              At max (100X) gain, this "preamp" will have 40nanoVolts/rtHz * sqrt(20,000Hz) * sqrt(2 res of 100K) * pi/2 * Av = 220/2.2 == 15uVrms * 100 = 1.5 milliVolts rms random noise, provided by R2 and R5.
              $endgroup$
              – analogsystemsrf
              Mar 28 at 3:39







            1




            1




            $begingroup$
            R2 puts a severe limit on transient current into the IC anyways. Not sure the OP has a transient problem to fix. Reducing R5 to reduce gain may be a better choice.
            $endgroup$
            – Sparky256
            Mar 28 at 1:07




            $begingroup$
            R2 puts a severe limit on transient current into the IC anyways. Not sure the OP has a transient problem to fix. Reducing R5 to reduce gain may be a better choice.
            $endgroup$
            – Sparky256
            Mar 28 at 1:07












            $begingroup$
            reducing R5 may cause oscillation; that OA is already at unity gain.
            $endgroup$
            – analogsystemsrf
            Mar 28 at 3:35




            $begingroup$
            reducing R5 may cause oscillation; that OA is already at unity gain.
            $endgroup$
            – analogsystemsrf
            Mar 28 at 3:35












            $begingroup$
            At max (100X) gain, this "preamp" will have 40nanoVolts/rtHz * sqrt(20,000Hz) * sqrt(2 res of 100K) * pi/2 * Av = 220/2.2 == 15uVrms * 100 = 1.5 milliVolts rms random noise, provided by R2 and R5.
            $endgroup$
            – analogsystemsrf
            Mar 28 at 3:39




            $begingroup$
            At max (100X) gain, this "preamp" will have 40nanoVolts/rtHz * sqrt(20,000Hz) * sqrt(2 res of 100K) * pi/2 * Av = 220/2.2 == 15uVrms * 100 = 1.5 milliVolts rms random noise, provided by R2 and R5.
            $endgroup$
            – analogsystemsrf
            Mar 28 at 3:39

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f429404%2fpre-amplifier-input-protection%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?