Two monoidal structures and copoweringDefinition of enriched caterories or internal homs without using monoidal categories.Unitalization internal to monoidal categoriesCorrespondence between operads and monads requires tensor distribute over coproduct?Making additive envelopes of monoidal categories monoidalEnriching categories and equivalencesSeeking more information regarding the “rigoidal category” of $mathbbN$-graded setsIs there a monoidal category that coclassifies enriched category structures for a given set?Biased vs unbiased lax monoidal categoriesDefinitions of enriched monoidal categoryEnrichment of lax monoidal functors between closed monoidal categories

Two monoidal structures and copowering


Definition of enriched caterories or internal homs without using monoidal categories.Unitalization internal to monoidal categoriesCorrespondence between operads and monads requires tensor distribute over coproduct?Making additive envelopes of monoidal categories monoidalEnriching categories and equivalencesSeeking more information regarding the “rigoidal category” of $mathbbN$-graded setsIs there a monoidal category that coclassifies enriched category structures for a given set?Biased vs unbiased lax monoidal categoriesDefinitions of enriched monoidal categoryEnrichment of lax monoidal functors between closed monoidal categories













6












$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    Mar 27 at 20:59















6












$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    Mar 27 at 20:59













6












6








6





$begingroup$


Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?










share|cite|improve this question









$endgroup$




Let $(mathbfM,otimes,1)$ be a closed monoidal category and $(mathbfC,oplus,0)$ an $mathbfM$-enriched monoidal category. Furthermore, assume that we have a copowering $odot:mathbfMtimesmathbfCto mathbfC$. Is there a canonical morphism
$$(Aodot X)oplus (Bodot Y)to (Aotimes B)odot (Xoplus Y)$$
The question came to my mind because in order to spell out the axioms (in one of the definitions) for an algebra over an operad $mathcalO$ in the above setting, we need for the associativity axiom a morphism
$$mathcalO(r)odot left(bigoplus_i (mathcalO(k_i)odot X^oplus k_i)right)toleft(mathcalO(r)otimesbigotimes_imathcalO(k_i)right)odot left(bigoplus_iX^oplus k_iright)$$
Or the other direction. If $mathbfM$ is considered to be enriched over itself, everything is fine because then $otimes=odot=oplus$, but in general?







ct.category-theory monoidal-categories operads enriched-category-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 27 at 20:47









FKranholdFKranhold

3636




3636







  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    Mar 27 at 20:59












  • 1




    $begingroup$
    Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
    $endgroup$
    – FKranhold
    Mar 27 at 20:59







1




1




$begingroup$
Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
$endgroup$
– FKranhold
Mar 27 at 20:59




$begingroup$
Okay, it seems to be equivalent to the formulation: “The copowering is a monoidal functor with respect to the component-wise monoidal structure.”
$endgroup$
– FKranhold
Mar 27 at 20:59










1 Answer
1






active

oldest

votes


















9












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    Mar 27 at 21:06










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 27 at 21:59










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    Mar 27 at 22:30







  • 1




    $begingroup$
    In the universal property of the copower, as you state it in your comment, take $Y=Aodot X$. This gives $C(Aodot X,Aodot X)cong C(X,Aodot X)^A$. Combining this with the identity map you mention gives $1to C(X,Aodot X)^A$, which transposes to give the desired map $Ato C(X,Aodot X)$.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 28 at 8:26










  • $begingroup$
    Ah, of course! Thank you!
    $endgroup$
    – FKranhold
    Mar 28 at 8:36











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326520%2ftwo-monoidal-structures-and-copowering%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    Mar 27 at 21:06










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 27 at 21:59










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    Mar 27 at 22:30







  • 1




    $begingroup$
    In the universal property of the copower, as you state it in your comment, take $Y=Aodot X$. This gives $C(Aodot X,Aodot X)cong C(X,Aodot X)^A$. Combining this with the identity map you mention gives $1to C(X,Aodot X)^A$, which transposes to give the desired map $Ato C(X,Aodot X)$.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 28 at 8:26










  • $begingroup$
    Ah, of course! Thank you!
    $endgroup$
    – FKranhold
    Mar 28 at 8:36















9












$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    Mar 27 at 21:06










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 27 at 21:59










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    Mar 27 at 22:30







  • 1




    $begingroup$
    In the universal property of the copower, as you state it in your comment, take $Y=Aodot X$. This gives $C(Aodot X,Aodot X)cong C(X,Aodot X)^A$. Combining this with the identity map you mention gives $1to C(X,Aodot X)^A$, which transposes to give the desired map $Ato C(X,Aodot X)$.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 28 at 8:26










  • $begingroup$
    Ah, of course! Thank you!
    $endgroup$
    – FKranhold
    Mar 28 at 8:36













9












9








9





$begingroup$

No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.






share|cite|improve this answer











$endgroup$



No. Consider the case where $(M,otimes,1)$ is $(mathbfSet,times,1)$, so the enrichment is vacuous, and $(C,oplus,0)$ is $(mathbfSet,+,0)$, with copowering $odot$ given by $times$.



Then the morphism you ask for would give a map
$$(A times X) + (B times Y) longrightarrow (A times B) times (X + Y) $$



which doesn’t exist in general: consider $A = X = Y = 1$, $B = 0$.




However, there is a natural map in the other direction. There are natural maps $A to C(X,A odot X)$ and $B to C(Y,B odot Y)$, the structure maps of the copowering. Also, the definition of enriched monoidal category includes the condition that $oplus$ is an enriched bifunctor, so there’s a general map $C(X,X') otimes C(Y,Y') to C(X oplus Y, X' oplus Y')$. Putting these together, we get a map
$$ A otimes B longrightarrow C(X, A odot X) otimes C(Y, B odot Y) longrightarrow C(X oplus Y, (A odot X) oplus (B odot Y)) $$
which corresponds under copowering to a map $(A otimes B) odot (X oplus Y) to (A odot X) oplus (B odot Y)$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 27 at 22:05

























answered Mar 27 at 20:59









Peter LeFanu LumsdainePeter LeFanu Lumsdaine

8,87613871




8,87613871











  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    Mar 27 at 21:06










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 27 at 21:59










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    Mar 27 at 22:30







  • 1




    $begingroup$
    In the universal property of the copower, as you state it in your comment, take $Y=Aodot X$. This gives $C(Aodot X,Aodot X)cong C(X,Aodot X)^A$. Combining this with the identity map you mention gives $1to C(X,Aodot X)^A$, which transposes to give the desired map $Ato C(X,Aodot X)$.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 28 at 8:26










  • $begingroup$
    Ah, of course! Thank you!
    $endgroup$
    – FKranhold
    Mar 28 at 8:36
















  • $begingroup$
    Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
    $endgroup$
    – FKranhold
    Mar 27 at 21:06










  • $begingroup$
    @FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 27 at 21:59










  • $begingroup$
    I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
    $endgroup$
    – FKranhold
    Mar 27 at 22:30







  • 1




    $begingroup$
    In the universal property of the copower, as you state it in your comment, take $Y=Aodot X$. This gives $C(Aodot X,Aodot X)cong C(X,Aodot X)^A$. Combining this with the identity map you mention gives $1to C(X,Aodot X)^A$, which transposes to give the desired map $Ato C(X,Aodot X)$.
    $endgroup$
    – Peter LeFanu Lumsdaine
    Mar 28 at 8:26










  • $begingroup$
    Ah, of course! Thank you!
    $endgroup$
    – FKranhold
    Mar 28 at 8:36















$begingroup$
Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
$endgroup$
– FKranhold
Mar 27 at 21:06




$begingroup$
Good counterexample! Then maybe there is a canonical morphism in the other direction? Otherwise, I have the above problem with the associativity axiom for algebras over operads, as long as we do not assume that the copowering is a monoidal functor …
$endgroup$
– FKranhold
Mar 27 at 21:06












$begingroup$
@FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
$endgroup$
– Peter LeFanu Lumsdaine
Mar 27 at 21:59




$begingroup$
@FKranhold: Yes, there is a natural map in the converse direction — I’ll add the description of that in my answer.
$endgroup$
– Peter LeFanu Lumsdaine
Mar 27 at 21:59












$begingroup$
I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
$endgroup$
– FKranhold
Mar 27 at 22:30





$begingroup$
I don’t see the maps $Ato C(X,Aodot X)$ and $Bto C(Y,Bodot Y)$. It is clear that we have $1to C(X,X)$ and the only thing I know from the copower is that $C(Aodot X,Y)cong C(X,Y)^A$, right? How can I get $Ato C(X,Aodot X)$? The rest of your explanation is well understandable.
$endgroup$
– FKranhold
Mar 27 at 22:30





1




1




$begingroup$
In the universal property of the copower, as you state it in your comment, take $Y=Aodot X$. This gives $C(Aodot X,Aodot X)cong C(X,Aodot X)^A$. Combining this with the identity map you mention gives $1to C(X,Aodot X)^A$, which transposes to give the desired map $Ato C(X,Aodot X)$.
$endgroup$
– Peter LeFanu Lumsdaine
Mar 28 at 8:26




$begingroup$
In the universal property of the copower, as you state it in your comment, take $Y=Aodot X$. This gives $C(Aodot X,Aodot X)cong C(X,Aodot X)^A$. Combining this with the identity map you mention gives $1to C(X,Aodot X)^A$, which transposes to give the desired map $Ato C(X,Aodot X)$.
$endgroup$
– Peter LeFanu Lumsdaine
Mar 28 at 8:26












$begingroup$
Ah, of course! Thank you!
$endgroup$
– FKranhold
Mar 28 at 8:36




$begingroup$
Ah, of course! Thank you!
$endgroup$
– FKranhold
Mar 28 at 8:36

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326520%2ftwo-monoidal-structures-and-copowering%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

Luettelo Yhdysvaltain laivaston lentotukialuksista Lähteet | Navigointivalikko

Gary (muusikko) Sisällysluettelo Historia | Rockin' High | Lähteet | Aiheesta muualla | NavigointivalikkoInfobox OKTuomas "Gary" Keskinen Ancaran kitaristiksiProjekti Rockin' High