Marginalization of joint distribution2019 Community Moderator Electionpredicting probability distribution for time seriesTesting fit of probability distributionAn unbiased simulator for policy simulation in reinforcement learningMultimodal distribution and GANsHow does binary cross entropy work?Calibrate the predicted class probability to make it represent a true probability?How do I combine two electromagnetic readings to predict the position of a sensor?the probability distribution of dependent variablesWavenet joint probabilityHow to elegantly caclulate probability distribution parameters for a particular random variable given some observed data?

Problem of parity - Can we draw a closed path made up of 20 line segments...

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

To string or not to string

Do I have a twin with permutated remainders?

How to format long polynomial?

How much RAM could one put in a typical 80386 setup?

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

How do I create uniquely male characters?

Is it unprofessional to ask if a job posting on GlassDoor is real?

LaTeX closing $ signs makes cursor jump

"You are your self first supporter", a more proper way to say it

What's the output of a record cartridge playing an out-of-speed record

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

Why can't I see bouncing of a switch on an oscilloscope?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

What do you call a Matrix-like slowdown and camera movement effect?

Why doesn't H₄O²⁺ exist?

Maximum likelihood parameters deviate from posterior distributions

Writing rule stating superpower from different root cause is bad writing

Mathematical cryptic clues

How can bays and straits be determined in a procedurally generated map?

How old can references or sources in a thesis be?

Have astronauts in space suits ever taken selfies? If so, how?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)



Marginalization of joint distribution



2019 Community Moderator Electionpredicting probability distribution for time seriesTesting fit of probability distributionAn unbiased simulator for policy simulation in reinforcement learningMultimodal distribution and GANsHow does binary cross entropy work?Calibrate the predicted class probability to make it represent a true probability?How do I combine two electromagnetic readings to predict the position of a sensor?the probability distribution of dependent variablesWavenet joint probabilityHow to elegantly caclulate probability distribution parameters for a particular random variable given some observed data?










2












$begingroup$


I am trying to understand how you marginalise a joint distribution.



In my case I have a fair coin, $P(C) = frac12$ and a fair dice $P(D) = frac16$. I am told I win a prize if I flip the coin and it lands on Tails and if the outcome of the dice $= 1$. I am told at least one of them is correct.



$$Q = (textCoin = Tails or Dice = 1)$$



$$W = (textCoin = Tails and Dice = 1)$$



So if I wanted to work out the probability $W =$ True $| Q =$ True I can use marginalisation to work this out given the joint distribution:



$$P(C), P(D), P(Q|C,D), P(W|C,D)$$



I am just not sure where to start any help would be really appreciated. I am pretty new to this.



Thanks in advance.










share|improve this question











$endgroup$
















    2












    $begingroup$


    I am trying to understand how you marginalise a joint distribution.



    In my case I have a fair coin, $P(C) = frac12$ and a fair dice $P(D) = frac16$. I am told I win a prize if I flip the coin and it lands on Tails and if the outcome of the dice $= 1$. I am told at least one of them is correct.



    $$Q = (textCoin = Tails or Dice = 1)$$



    $$W = (textCoin = Tails and Dice = 1)$$



    So if I wanted to work out the probability $W =$ True $| Q =$ True I can use marginalisation to work this out given the joint distribution:



    $$P(C), P(D), P(Q|C,D), P(W|C,D)$$



    I am just not sure where to start any help would be really appreciated. I am pretty new to this.



    Thanks in advance.










    share|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      I am trying to understand how you marginalise a joint distribution.



      In my case I have a fair coin, $P(C) = frac12$ and a fair dice $P(D) = frac16$. I am told I win a prize if I flip the coin and it lands on Tails and if the outcome of the dice $= 1$. I am told at least one of them is correct.



      $$Q = (textCoin = Tails or Dice = 1)$$



      $$W = (textCoin = Tails and Dice = 1)$$



      So if I wanted to work out the probability $W =$ True $| Q =$ True I can use marginalisation to work this out given the joint distribution:



      $$P(C), P(D), P(Q|C,D), P(W|C,D)$$



      I am just not sure where to start any help would be really appreciated. I am pretty new to this.



      Thanks in advance.










      share|improve this question











      $endgroup$




      I am trying to understand how you marginalise a joint distribution.



      In my case I have a fair coin, $P(C) = frac12$ and a fair dice $P(D) = frac16$. I am told I win a prize if I flip the coin and it lands on Tails and if the outcome of the dice $= 1$. I am told at least one of them is correct.



      $$Q = (textCoin = Tails or Dice = 1)$$



      $$W = (textCoin = Tails and Dice = 1)$$



      So if I wanted to work out the probability $W =$ True $| Q =$ True I can use marginalisation to work this out given the joint distribution:



      $$P(C), P(D), P(Q|C,D), P(W|C,D)$$



      I am just not sure where to start any help would be really appreciated. I am pretty new to this.



      Thanks in advance.







      probability bayesian-networks






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Feb 25 at 18:20









      Siong Thye Goh

      1,408620




      1,408620










      asked Feb 25 at 13:22









      Jackt153Jackt153

      111




      111




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Guide:



          To solve the problem, we have to assume that there is the outcome of the dice and the outcome of the coins are independent.



          We let $C$ denotes the event that the coin lands on tail and $D$ be the event that the dice outcome is $1$.



          You have been given that the coin lands on tails or the dice lands on $1$, and you are interested in finding out that the coin lands on tails and the dice lands on $1$.



          You want to compute $P(W|Q)=fracP(Wcap Q)P(Q)=fracP(W)P(Q)=fracP(C)P(D)P(Q)$.



          To compute $P(Q)$ where $Q= C cup D$. You can either use $$P(Q)= P(C)+P(D)-P(Ccap D)$$



          or $$P(Q)=1-P(Q^c)=1-P(C^c cap D^c)$$



          Given all these formulas, hopefully you can solve for $P(W|Q)$.






          share|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46197%2fmarginalization-of-joint-distribution%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Guide:



            To solve the problem, we have to assume that there is the outcome of the dice and the outcome of the coins are independent.



            We let $C$ denotes the event that the coin lands on tail and $D$ be the event that the dice outcome is $1$.



            You have been given that the coin lands on tails or the dice lands on $1$, and you are interested in finding out that the coin lands on tails and the dice lands on $1$.



            You want to compute $P(W|Q)=fracP(Wcap Q)P(Q)=fracP(W)P(Q)=fracP(C)P(D)P(Q)$.



            To compute $P(Q)$ where $Q= C cup D$. You can either use $$P(Q)= P(C)+P(D)-P(Ccap D)$$



            or $$P(Q)=1-P(Q^c)=1-P(C^c cap D^c)$$



            Given all these formulas, hopefully you can solve for $P(W|Q)$.






            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              Guide:



              To solve the problem, we have to assume that there is the outcome of the dice and the outcome of the coins are independent.



              We let $C$ denotes the event that the coin lands on tail and $D$ be the event that the dice outcome is $1$.



              You have been given that the coin lands on tails or the dice lands on $1$, and you are interested in finding out that the coin lands on tails and the dice lands on $1$.



              You want to compute $P(W|Q)=fracP(Wcap Q)P(Q)=fracP(W)P(Q)=fracP(C)P(D)P(Q)$.



              To compute $P(Q)$ where $Q= C cup D$. You can either use $$P(Q)= P(C)+P(D)-P(Ccap D)$$



              or $$P(Q)=1-P(Q^c)=1-P(C^c cap D^c)$$



              Given all these formulas, hopefully you can solve for $P(W|Q)$.






              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                Guide:



                To solve the problem, we have to assume that there is the outcome of the dice and the outcome of the coins are independent.



                We let $C$ denotes the event that the coin lands on tail and $D$ be the event that the dice outcome is $1$.



                You have been given that the coin lands on tails or the dice lands on $1$, and you are interested in finding out that the coin lands on tails and the dice lands on $1$.



                You want to compute $P(W|Q)=fracP(Wcap Q)P(Q)=fracP(W)P(Q)=fracP(C)P(D)P(Q)$.



                To compute $P(Q)$ where $Q= C cup D$. You can either use $$P(Q)= P(C)+P(D)-P(Ccap D)$$



                or $$P(Q)=1-P(Q^c)=1-P(C^c cap D^c)$$



                Given all these formulas, hopefully you can solve for $P(W|Q)$.






                share|improve this answer









                $endgroup$



                Guide:



                To solve the problem, we have to assume that there is the outcome of the dice and the outcome of the coins are independent.



                We let $C$ denotes the event that the coin lands on tail and $D$ be the event that the dice outcome is $1$.



                You have been given that the coin lands on tails or the dice lands on $1$, and you are interested in finding out that the coin lands on tails and the dice lands on $1$.



                You want to compute $P(W|Q)=fracP(Wcap Q)P(Q)=fracP(W)P(Q)=fracP(C)P(D)P(Q)$.



                To compute $P(Q)$ where $Q= C cup D$. You can either use $$P(Q)= P(C)+P(D)-P(Ccap D)$$



                or $$P(Q)=1-P(Q^c)=1-P(C^c cap D^c)$$



                Given all these formulas, hopefully you can solve for $P(W|Q)$.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Feb 25 at 16:30









                Siong Thye GohSiong Thye Goh

                1,408620




                1,408620



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46197%2fmarginalization-of-joint-distribution%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Marja Vauras Lähteet | Aiheesta muualla | NavigointivalikkoMarja Vauras Turun yliopiston tutkimusportaalissaInfobox OKSuomalaisen Tiedeakatemian varsinaiset jäsenetKasvatustieteiden tiedekunnan dekaanit ja muu johtoMarja VaurasKoulutusvienti on kestävyys- ja ketteryyslaji (2.5.2017)laajentamallaWorldCat Identities0000 0001 0855 9405n86069603utb201588738523620927

                    Which is better: GPT or RelGAN for text generation?2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task

                    Is this part of the description of the Archfey warlock's Misty Escape feature redundant?When is entropic ward considered “used”?How does the reaction timing work for Wrath of the Storm? Can it potentially prevent the damage from the triggering attack?Does the Dark Arts Archlich warlock patrons's Arcane Invisibility activate every time you cast a level 1+ spell?When attacking while invisible, when exactly does invisibility break?Can I cast Hellish Rebuke on my turn?Do I have to “pre-cast” a reaction spell in order for it to be triggered?What happens if a Player Misty Escapes into an Invisible CreatureCan a reaction interrupt multiattack?Does the Fiend-patron warlock's Hurl Through Hell feature dispel effects that require the target to be on the same plane as the caster?What are you allowed to do while using the Warlock's Eldritch Master feature?