Is expanding the research of a group into machine learning as a PhD student risky? [closed]How to enhance my prospects for a PhD?Contacting professor for PhD in different research area than past experience: do I need to prepare a research proposal before first contact?Masters in US or (Masters + MPhil) in UKWill a 2-year post-doc in deep-learning harm me in the long-term?Communication & Networks v/s Signal Processing & Optimization - what area to work in?I'm confused and frustrated by my postdoc mentor's stubbornness and not caring for my future at all. What should I do?Doing PhD on computer vision with an engineering backgroundDoes it look bad if I apply to two very different fields for grad school?How do I ask for a reference letter from a professor I do not want to work with?Contacting potential PhD advisors while not knowing research topic?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.

Why can't I see bouncing of a switch on an oscilloscope?

Why, historically, did Gödel think CH was false?

Is a conference paper whose proceedings will be published in IEEE Xplore counted as a publication?

What is the word for reserving something for yourself before others do?

What typically incentivizes a professor to change jobs to a lower ranking university?

Collect Fourier series terms

Why do I get two different answers for this counting problem?

How old can references or sources in a thesis be?

Why are electrically insulating heatsinks so rare? Is it just cost?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Mage Armor with Defense fighting style (for Adventurers League bladeslinger)

What are these boxed doors outside store fronts in New York?

What do three bars across the stem of a note mean?

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?

"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"

Is a tag line useful on a cover?

What's the point of deactivating Num Lock on login screens?

Which models of the Boeing 737 are still in production?

I'm planning on buying a laser printer but concerned about the life cycle of toner in the machine

Do VLANs within a subnet need to have their own subnet for router on a stick?

What are the differences between the usage of 'it' and 'they'?

To string or not to string



Is expanding the research of a group into machine learning as a PhD student risky? [closed]


How to enhance my prospects for a PhD?Contacting professor for PhD in different research area than past experience: do I need to prepare a research proposal before first contact?Masters in US or (Masters + MPhil) in UKWill a 2-year post-doc in deep-learning harm me in the long-term?Communication & Networks v/s Signal Processing & Optimization - what area to work in?I'm confused and frustrated by my postdoc mentor's stubbornness and not caring for my future at all. What should I do?Doing PhD on computer vision with an engineering backgroundDoes it look bad if I apply to two very different fields for grad school?How do I ask for a reference letter from a professor I do not want to work with?Contacting potential PhD advisors while not knowing research topic?













26















I have the opportunity of doing a PhD under the supervision of an expert in medical imaging at a top institution. Currently their group does not conduct research into the application of machine learning to medical image acquisition and processing. The purpose of the PhD studentship would be to pursue research into this. The department has significant machine learning and signal processing research groups whose seminars I will be able to attend and academics I can have contact with.



The supervisor has not for some time (before deep learning) pursued research in machine learning. The PhD itself is as yet not strongly structured and will initially require a deal of exploration and prospecting before its final form is decided.



Given that there is a safe fallback of medical imaging I do not foresee a risk to completing the PhD. However, as the only member of the group pursuing machine learning would this be a very risky PhD to embark on, particularly considering that afterwards I intend to pursue a career in academia? Are there any benefits?










share|improve this question















closed as off-topic by Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano Mar 28 at 18:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "The answer to this question strongly depends on individual factors such as a certain person’s preferences, a given institution’s regulations, the exact contents of your work or your personal values. Thus only someone familiar can answer this question and it cannot be generalised to apply to others. (See this discussion for more info.)" – Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano
If this question can be reworded to fit the rules in the help center, please edit the question.











  • 5





    It sounds to me like an exciting opportunity!

    – littleO
    Mar 28 at 9:03






  • 2





    Voting to re-open. OP is not asking which of two programs he should take; the question is about the risks inherent with accepting a position that would expand the group's portfolio and exceed his advisor's area of competence.

    – cag51
    Mar 28 at 21:40











  • My question was as stated by @cag51. Perhaps the part in parentheses about another position confuses the issue. Would the same objection stand if I remove it? It is in retrospect irrelevant to my core question.

    – MHilton
    Mar 29 at 0:30















26















I have the opportunity of doing a PhD under the supervision of an expert in medical imaging at a top institution. Currently their group does not conduct research into the application of machine learning to medical image acquisition and processing. The purpose of the PhD studentship would be to pursue research into this. The department has significant machine learning and signal processing research groups whose seminars I will be able to attend and academics I can have contact with.



The supervisor has not for some time (before deep learning) pursued research in machine learning. The PhD itself is as yet not strongly structured and will initially require a deal of exploration and prospecting before its final form is decided.



Given that there is a safe fallback of medical imaging I do not foresee a risk to completing the PhD. However, as the only member of the group pursuing machine learning would this be a very risky PhD to embark on, particularly considering that afterwards I intend to pursue a career in academia? Are there any benefits?










share|improve this question















closed as off-topic by Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano Mar 28 at 18:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "The answer to this question strongly depends on individual factors such as a certain person’s preferences, a given institution’s regulations, the exact contents of your work or your personal values. Thus only someone familiar can answer this question and it cannot be generalised to apply to others. (See this discussion for more info.)" – Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano
If this question can be reworded to fit the rules in the help center, please edit the question.











  • 5





    It sounds to me like an exciting opportunity!

    – littleO
    Mar 28 at 9:03






  • 2





    Voting to re-open. OP is not asking which of two programs he should take; the question is about the risks inherent with accepting a position that would expand the group's portfolio and exceed his advisor's area of competence.

    – cag51
    Mar 28 at 21:40











  • My question was as stated by @cag51. Perhaps the part in parentheses about another position confuses the issue. Would the same objection stand if I remove it? It is in retrospect irrelevant to my core question.

    – MHilton
    Mar 29 at 0:30













26












26








26


5






I have the opportunity of doing a PhD under the supervision of an expert in medical imaging at a top institution. Currently their group does not conduct research into the application of machine learning to medical image acquisition and processing. The purpose of the PhD studentship would be to pursue research into this. The department has significant machine learning and signal processing research groups whose seminars I will be able to attend and academics I can have contact with.



The supervisor has not for some time (before deep learning) pursued research in machine learning. The PhD itself is as yet not strongly structured and will initially require a deal of exploration and prospecting before its final form is decided.



Given that there is a safe fallback of medical imaging I do not foresee a risk to completing the PhD. However, as the only member of the group pursuing machine learning would this be a very risky PhD to embark on, particularly considering that afterwards I intend to pursue a career in academia? Are there any benefits?










share|improve this question
















I have the opportunity of doing a PhD under the supervision of an expert in medical imaging at a top institution. Currently their group does not conduct research into the application of machine learning to medical image acquisition and processing. The purpose of the PhD studentship would be to pursue research into this. The department has significant machine learning and signal processing research groups whose seminars I will be able to attend and academics I can have contact with.



The supervisor has not for some time (before deep learning) pursued research in machine learning. The PhD itself is as yet not strongly structured and will initially require a deal of exploration and prospecting before its final form is decided.



Given that there is a safe fallback of medical imaging I do not foresee a risk to completing the PhD. However, as the only member of the group pursuing machine learning would this be a very risky PhD to embark on, particularly considering that afterwards I intend to pursue a career in academia? Are there any benefits?







phd research-process united-kingdom supervision






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 29 at 18:43







MHilton

















asked Mar 26 at 23:57









MHiltonMHilton

13626




13626




closed as off-topic by Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano Mar 28 at 18:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "The answer to this question strongly depends on individual factors such as a certain person’s preferences, a given institution’s regulations, the exact contents of your work or your personal values. Thus only someone familiar can answer this question and it cannot be generalised to apply to others. (See this discussion for more info.)" – Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano
If this question can be reworded to fit the rules in the help center, please edit the question.







closed as off-topic by Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano Mar 28 at 18:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "The answer to this question strongly depends on individual factors such as a certain person’s preferences, a given institution’s regulations, the exact contents of your work or your personal values. Thus only someone familiar can answer this question and it cannot be generalised to apply to others. (See this discussion for more info.)" – Brian Borchers, user3209815, Jon Custer, David Richerby, Massimo Ortolano
If this question can be reworded to fit the rules in the help center, please edit the question.







  • 5





    It sounds to me like an exciting opportunity!

    – littleO
    Mar 28 at 9:03






  • 2





    Voting to re-open. OP is not asking which of two programs he should take; the question is about the risks inherent with accepting a position that would expand the group's portfolio and exceed his advisor's area of competence.

    – cag51
    Mar 28 at 21:40











  • My question was as stated by @cag51. Perhaps the part in parentheses about another position confuses the issue. Would the same objection stand if I remove it? It is in retrospect irrelevant to my core question.

    – MHilton
    Mar 29 at 0:30












  • 5





    It sounds to me like an exciting opportunity!

    – littleO
    Mar 28 at 9:03






  • 2





    Voting to re-open. OP is not asking which of two programs he should take; the question is about the risks inherent with accepting a position that would expand the group's portfolio and exceed his advisor's area of competence.

    – cag51
    Mar 28 at 21:40











  • My question was as stated by @cag51. Perhaps the part in parentheses about another position confuses the issue. Would the same objection stand if I remove it? It is in retrospect irrelevant to my core question.

    – MHilton
    Mar 29 at 0:30







5




5





It sounds to me like an exciting opportunity!

– littleO
Mar 28 at 9:03





It sounds to me like an exciting opportunity!

– littleO
Mar 28 at 9:03




2




2





Voting to re-open. OP is not asking which of two programs he should take; the question is about the risks inherent with accepting a position that would expand the group's portfolio and exceed his advisor's area of competence.

– cag51
Mar 28 at 21:40





Voting to re-open. OP is not asking which of two programs he should take; the question is about the risks inherent with accepting a position that would expand the group's portfolio and exceed his advisor's area of competence.

– cag51
Mar 28 at 21:40













My question was as stated by @cag51. Perhaps the part in parentheses about another position confuses the issue. Would the same objection stand if I remove it? It is in retrospect irrelevant to my core question.

– MHilton
Mar 29 at 0:30





My question was as stated by @cag51. Perhaps the part in parentheses about another position confuses the issue. Would the same objection stand if I remove it? It is in retrospect irrelevant to my core question.

– MHilton
Mar 29 at 0:30










8 Answers
8






active

oldest

votes


















51














I would ask about having a co-supervisor. Having access to esteemed DL researchers is great -- but they will have limited time/interest in helping you if you are not "formally" their student. If you manage to find someone in this role, I think your position is just about perfect.



If you don't manage to find someone in this role, I have three main concerns:



  • You will spend a ton of time re-inventing the wheel. For example, can you train a CNN on ImageNet from scratch? There are a lot of caveats needed to obtain state-of-the-art results (e.g., dataset augmentation, regularization loss, etc.), and you will likely rediscover them one-by-one (or, use a black-box model you don't really understand). A DL expert would likely already have working code and could explain it to you, allowing you to jump right to the research. (Yes, there are open source codes...but in my experience, they all require a lot of work to be both transparent and accurate.

  • Mathematical rigor. It's easy to just learn ML/DL at a "technician level" -- but as a PhD in it, you should really understand it a mathematical level if not a theorem/proof level. It can be difficult to do this on your own.

  • Problem selection. Your medical advisor will likely find it super novel to run existing techniques on medical images. There may even be a novel application here, on the medical side -- but on the ML side, this is not really interesting, it's just a straightforward application of one technique to a straightforward problem. This is maybe OK if your interest is entirely on the medical side -- but if you want to do something also interesting on the ML side, you would essentially be on your own to come up with something. That will be difficult to do (for the first time) without advisors on both sides.

Those are the main blind alleys I see. Of course, there is also a ton of upside -- this sounds like a very interesting, prestigious position that would position you well for an academic career. Only you can judge this tradeoff.






share|improve this answer




















  • 1





    (+1) One other thing I would add is that if OP does decide to do this, I would strongly advise they try to get something like a pure ML co-advisor

    – Cliff AB
    Mar 27 at 17:49











  • Yes, guess I didn't explicitly say the co-supervisor should be from ML rather than medicine, but that is a key point.

    – cag51
    Mar 27 at 19:07











  • Thank you very much for this answer. Particularly for the ML specific technical points.

    – MHilton
    Mar 27 at 23:06






  • 2





    "You would essentially be on your own to find a technique that is interesting from an ML perspective and apply it to a problem that is interesting from a medical perspective" -- does the research have to be novel in all dimensions for it to be worthy of a PhD? As an example, imagine if using bog-standard ML techniques they find they can detect cancer ridiculously earlier and more reliably than using standard techniques. (However, it is true that "I ran bog-standard ML on some images, here is 100 pages of proof that it wasn't useful" might not be a stellar PhD thesis)

    – Yakk
    Mar 28 at 13:51












  • @Yakk makes a very important point. Addressing the open problems in machine learning may not easily lead to anything useful in your particular application field. Both are quite mature fields by now, as is the combination of them. And further you may find that even just applying non-novel methods to your data is far harder to get working than the literature claims.

    – A Simple Algorithm
    Mar 28 at 15:29


















14














Do you want to design a tool that can build many things, or learn how best to use the available tools to build a house?



Do you want to do a PhD in machine learning or are you trying to use machine learning to solve problems in medical imaging?



In the first case I would agree with @cag51. Without a Deep Learning supervisor, it would be challenging and also unlikely your PhD would reach its full potential.



However, if you are more interested in finding novel and practical uses for existing machine learning techniques in order to improve the field of medical imaging then the lack of specialist supervisor is less important. There is a startling amount of low hanging fruit which requires only a broad conceptual understanding of machine learning combined with domain-specific expertise (e.g medical imaging).



After your first paper/project you will no doubt discover a host of problems that are specific to your domain area which require further research and in-depth knowledge of the domain area which can be provided by your primary supervisor.



It could be a great opportunity to help the field take advantage of benefits provided by machine learning in a very applied and practical way as well as carve out your own niche in academia.






share|improve this answer


















  • 1





    +1 ... while even getting "state-of-the-art" results with existing ML techniques is hard to do totally from scratch (see the first point on my answer), I agree that my third point (and maybe parts of my second point) don't apply if OP's real interests are in medicine. As you say in your last paragraph, I think whoever takes this position could likely become an "expert" in both.

    – cag51
    Mar 27 at 19:10











  • A problem is that without a ML expert helping, identifying what kind of ML fruit-picker to use, or even which fruit is low-hanging, could be difficult.

    – Yakk
    Mar 28 at 13:53











  • +1 for extending the analogy! However, I think that although that is theoretically true, it is unlikely to be true in real life. 'what are we trying to do and do we have data?' Is the biggest question in any problem. Once that is known, choose from a handful of algos and work from there. I'm not knocking the value of an ML supervisor, but I think that problem solving with ML is less mysterious and more accessible than a lot of us would like to believe.

    – Jonno Bourne
    Mar 29 at 8:21



















6














Sounds like a great fit, with some options for different paths post-Ph.D. along with some fallback if things don't work out perfectly. I wouldn't be super concerned about having all kinds of supervision by a deep expert. It is common for grad students to do their own work without significant apprenticeship by the "advisor" (grant writer). As long as you are careful to look out for yourself by sticking to tractable problem(s), it should be fine.



In addition, you seem to have thought things out and expressed them well. And some of your comments (like department work in signal processing) show enough awareness that you seem to be able to look out for yourself and drive your own research.






share|improve this answer






























    5














    I agree with Jonno Bourne's answer, but I don't have enough reputation to comment.



    I just want to add that I was in this same situation during my PhD. Specifically, I was in the second scenario, so if this is what you pursue, I can say from my experience that it is perfectly viable. You will just have to learn a lot of stuff on your own, but this is the cool part of a PhD, isn't it?



    If instead you want to do a PhD on machine learning, as opposed as using machine learning, then I would too consider looking for a (co-)supervisor with ML expertise.






    share|improve this answer






























      4














      Yes, this can be possible to do. I would not consider it particularly risky.



      One of my professors when I was a MSc student did almost exactly this when he did his PhD once upon a time. He specialized in one learning method and built applications for it in his main supervisors field.



      But it was long time before "deep learning" existed and subsequent ML-trends appeared. So I imagine it should hardly be more difficult now to motivate than it was then.



      The idea of trying to get a co-supervisor with good skills in learning seems like very good advice.






      share|improve this answer






























        4














        I recently graduated with a PhD in Plant Breeding. At my university, an increasing number of students are working with building predictive machines that their major advisers have no experience with. Most of us (myself included) were first students in plant breeding that applied predictive machines in largely technical manner, producing fairly derivative research from a predictive perspective, but was novel based on the crop is was applied to. The students that excelled in this situation the best were those with significant modelling experience to begin with, and almost all had completed Masters. If you go this route, you'll need to be more self-directed than average, and prepare to teach your major advisor as much as they teach you. I struggled a lot with the lack of clear direction from my major advisor, but it was ultimately worth it, as it opened up more options than would have been available if I took a more traditional path.






        share|improve this answer






























          2














          By undertaking a PhD in a field you are pursuing an interest in a field you just don't want to know more about, but you want to become an expert in. Your supervisor should be someone who can effectively guide you through this field and, when needed, teach you.



          PhDs are difficult and to give yourself the chance of learning the most possible I would embed yourself within a ML research group so you can learn from the best, rather than stumbling through the field yourself.



          While co-supervision is an option, my experience of it is it often does not work, with the student feeling stranded between two supervisors who each mutually see the student as the others problem. Great supervisors could work in synergy, but unless you have a way of evaluating this before you start you would be taking a gamble.



          From the supervisors perspective, what they need is to collaborate with an already established ML research group or bring in a Postdoctoral researcher with a PhD in a relevant ML sub-field. I think this is more likely to be a success and less risky for everyone involved.



          On the matter of funding: Unless you are extremely wealthy don't consider doing a PhD without funding. There are many PhDs out there with funding and not enough good people to do them...



          Closing statement:



          If you consider yourself an ML expert and want to learn more about medical imaging, do the PhD with the mentioned supervisor. If you want to become an expert in ML and maximise your chances of success in an academic career then undertake a PhD with the best ML research group you can get a funded PhD with. Save the cross-field collaboration for your post-doc or latter end of your PhD.



          No matter what decision you make, doing a PhD is a great privilege, so make the most of it and don't look back!






          share|improve this answer






























            0














            Important questions to answer for yourself:
            1. Jonno Bourne's question of what area do you want to focus on is important. In other words start with the end in mind.
            2. Most of what you learn will not be from your prospective supervisor and his recent experience with ML is not very important. Are you someone comfortable defining your own path?
            3. What do other graduate students working with your prospective supervisor think of him?
            This is important. He may want a particular outcome and will limit your investigations or he may encourage creativity and let you decide how you can contribute.



            Funding for my RA was very important and it gave me peace of mind.






            share|improve this answer





























              8 Answers
              8






              active

              oldest

              votes








              8 Answers
              8






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              51














              I would ask about having a co-supervisor. Having access to esteemed DL researchers is great -- but they will have limited time/interest in helping you if you are not "formally" their student. If you manage to find someone in this role, I think your position is just about perfect.



              If you don't manage to find someone in this role, I have three main concerns:



              • You will spend a ton of time re-inventing the wheel. For example, can you train a CNN on ImageNet from scratch? There are a lot of caveats needed to obtain state-of-the-art results (e.g., dataset augmentation, regularization loss, etc.), and you will likely rediscover them one-by-one (or, use a black-box model you don't really understand). A DL expert would likely already have working code and could explain it to you, allowing you to jump right to the research. (Yes, there are open source codes...but in my experience, they all require a lot of work to be both transparent and accurate.

              • Mathematical rigor. It's easy to just learn ML/DL at a "technician level" -- but as a PhD in it, you should really understand it a mathematical level if not a theorem/proof level. It can be difficult to do this on your own.

              • Problem selection. Your medical advisor will likely find it super novel to run existing techniques on medical images. There may even be a novel application here, on the medical side -- but on the ML side, this is not really interesting, it's just a straightforward application of one technique to a straightforward problem. This is maybe OK if your interest is entirely on the medical side -- but if you want to do something also interesting on the ML side, you would essentially be on your own to come up with something. That will be difficult to do (for the first time) without advisors on both sides.

              Those are the main blind alleys I see. Of course, there is also a ton of upside -- this sounds like a very interesting, prestigious position that would position you well for an academic career. Only you can judge this tradeoff.






              share|improve this answer




















              • 1





                (+1) One other thing I would add is that if OP does decide to do this, I would strongly advise they try to get something like a pure ML co-advisor

                – Cliff AB
                Mar 27 at 17:49











              • Yes, guess I didn't explicitly say the co-supervisor should be from ML rather than medicine, but that is a key point.

                – cag51
                Mar 27 at 19:07











              • Thank you very much for this answer. Particularly for the ML specific technical points.

                – MHilton
                Mar 27 at 23:06






              • 2





                "You would essentially be on your own to find a technique that is interesting from an ML perspective and apply it to a problem that is interesting from a medical perspective" -- does the research have to be novel in all dimensions for it to be worthy of a PhD? As an example, imagine if using bog-standard ML techniques they find they can detect cancer ridiculously earlier and more reliably than using standard techniques. (However, it is true that "I ran bog-standard ML on some images, here is 100 pages of proof that it wasn't useful" might not be a stellar PhD thesis)

                – Yakk
                Mar 28 at 13:51












              • @Yakk makes a very important point. Addressing the open problems in machine learning may not easily lead to anything useful in your particular application field. Both are quite mature fields by now, as is the combination of them. And further you may find that even just applying non-novel methods to your data is far harder to get working than the literature claims.

                – A Simple Algorithm
                Mar 28 at 15:29















              51














              I would ask about having a co-supervisor. Having access to esteemed DL researchers is great -- but they will have limited time/interest in helping you if you are not "formally" their student. If you manage to find someone in this role, I think your position is just about perfect.



              If you don't manage to find someone in this role, I have three main concerns:



              • You will spend a ton of time re-inventing the wheel. For example, can you train a CNN on ImageNet from scratch? There are a lot of caveats needed to obtain state-of-the-art results (e.g., dataset augmentation, regularization loss, etc.), and you will likely rediscover them one-by-one (or, use a black-box model you don't really understand). A DL expert would likely already have working code and could explain it to you, allowing you to jump right to the research. (Yes, there are open source codes...but in my experience, they all require a lot of work to be both transparent and accurate.

              • Mathematical rigor. It's easy to just learn ML/DL at a "technician level" -- but as a PhD in it, you should really understand it a mathematical level if not a theorem/proof level. It can be difficult to do this on your own.

              • Problem selection. Your medical advisor will likely find it super novel to run existing techniques on medical images. There may even be a novel application here, on the medical side -- but on the ML side, this is not really interesting, it's just a straightforward application of one technique to a straightforward problem. This is maybe OK if your interest is entirely on the medical side -- but if you want to do something also interesting on the ML side, you would essentially be on your own to come up with something. That will be difficult to do (for the first time) without advisors on both sides.

              Those are the main blind alleys I see. Of course, there is also a ton of upside -- this sounds like a very interesting, prestigious position that would position you well for an academic career. Only you can judge this tradeoff.






              share|improve this answer




















              • 1





                (+1) One other thing I would add is that if OP does decide to do this, I would strongly advise they try to get something like a pure ML co-advisor

                – Cliff AB
                Mar 27 at 17:49











              • Yes, guess I didn't explicitly say the co-supervisor should be from ML rather than medicine, but that is a key point.

                – cag51
                Mar 27 at 19:07











              • Thank you very much for this answer. Particularly for the ML specific technical points.

                – MHilton
                Mar 27 at 23:06






              • 2





                "You would essentially be on your own to find a technique that is interesting from an ML perspective and apply it to a problem that is interesting from a medical perspective" -- does the research have to be novel in all dimensions for it to be worthy of a PhD? As an example, imagine if using bog-standard ML techniques they find they can detect cancer ridiculously earlier and more reliably than using standard techniques. (However, it is true that "I ran bog-standard ML on some images, here is 100 pages of proof that it wasn't useful" might not be a stellar PhD thesis)

                – Yakk
                Mar 28 at 13:51












              • @Yakk makes a very important point. Addressing the open problems in machine learning may not easily lead to anything useful in your particular application field. Both are quite mature fields by now, as is the combination of them. And further you may find that even just applying non-novel methods to your data is far harder to get working than the literature claims.

                – A Simple Algorithm
                Mar 28 at 15:29













              51












              51








              51







              I would ask about having a co-supervisor. Having access to esteemed DL researchers is great -- but they will have limited time/interest in helping you if you are not "formally" their student. If you manage to find someone in this role, I think your position is just about perfect.



              If you don't manage to find someone in this role, I have three main concerns:



              • You will spend a ton of time re-inventing the wheel. For example, can you train a CNN on ImageNet from scratch? There are a lot of caveats needed to obtain state-of-the-art results (e.g., dataset augmentation, regularization loss, etc.), and you will likely rediscover them one-by-one (or, use a black-box model you don't really understand). A DL expert would likely already have working code and could explain it to you, allowing you to jump right to the research. (Yes, there are open source codes...but in my experience, they all require a lot of work to be both transparent and accurate.

              • Mathematical rigor. It's easy to just learn ML/DL at a "technician level" -- but as a PhD in it, you should really understand it a mathematical level if not a theorem/proof level. It can be difficult to do this on your own.

              • Problem selection. Your medical advisor will likely find it super novel to run existing techniques on medical images. There may even be a novel application here, on the medical side -- but on the ML side, this is not really interesting, it's just a straightforward application of one technique to a straightforward problem. This is maybe OK if your interest is entirely on the medical side -- but if you want to do something also interesting on the ML side, you would essentially be on your own to come up with something. That will be difficult to do (for the first time) without advisors on both sides.

              Those are the main blind alleys I see. Of course, there is also a ton of upside -- this sounds like a very interesting, prestigious position that would position you well for an academic career. Only you can judge this tradeoff.






              share|improve this answer















              I would ask about having a co-supervisor. Having access to esteemed DL researchers is great -- but they will have limited time/interest in helping you if you are not "formally" their student. If you manage to find someone in this role, I think your position is just about perfect.



              If you don't manage to find someone in this role, I have three main concerns:



              • You will spend a ton of time re-inventing the wheel. For example, can you train a CNN on ImageNet from scratch? There are a lot of caveats needed to obtain state-of-the-art results (e.g., dataset augmentation, regularization loss, etc.), and you will likely rediscover them one-by-one (or, use a black-box model you don't really understand). A DL expert would likely already have working code and could explain it to you, allowing you to jump right to the research. (Yes, there are open source codes...but in my experience, they all require a lot of work to be both transparent and accurate.

              • Mathematical rigor. It's easy to just learn ML/DL at a "technician level" -- but as a PhD in it, you should really understand it a mathematical level if not a theorem/proof level. It can be difficult to do this on your own.

              • Problem selection. Your medical advisor will likely find it super novel to run existing techniques on medical images. There may even be a novel application here, on the medical side -- but on the ML side, this is not really interesting, it's just a straightforward application of one technique to a straightforward problem. This is maybe OK if your interest is entirely on the medical side -- but if you want to do something also interesting on the ML side, you would essentially be on your own to come up with something. That will be difficult to do (for the first time) without advisors on both sides.

              Those are the main blind alleys I see. Of course, there is also a ton of upside -- this sounds like a very interesting, prestigious position that would position you well for an academic career. Only you can judge this tradeoff.







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Mar 28 at 14:34

























              answered Mar 27 at 1:11









              cag51cag51

              18.2k83868




              18.2k83868







              • 1





                (+1) One other thing I would add is that if OP does decide to do this, I would strongly advise they try to get something like a pure ML co-advisor

                – Cliff AB
                Mar 27 at 17:49











              • Yes, guess I didn't explicitly say the co-supervisor should be from ML rather than medicine, but that is a key point.

                – cag51
                Mar 27 at 19:07











              • Thank you very much for this answer. Particularly for the ML specific technical points.

                – MHilton
                Mar 27 at 23:06






              • 2





                "You would essentially be on your own to find a technique that is interesting from an ML perspective and apply it to a problem that is interesting from a medical perspective" -- does the research have to be novel in all dimensions for it to be worthy of a PhD? As an example, imagine if using bog-standard ML techniques they find they can detect cancer ridiculously earlier and more reliably than using standard techniques. (However, it is true that "I ran bog-standard ML on some images, here is 100 pages of proof that it wasn't useful" might not be a stellar PhD thesis)

                – Yakk
                Mar 28 at 13:51












              • @Yakk makes a very important point. Addressing the open problems in machine learning may not easily lead to anything useful in your particular application field. Both are quite mature fields by now, as is the combination of them. And further you may find that even just applying non-novel methods to your data is far harder to get working than the literature claims.

                – A Simple Algorithm
                Mar 28 at 15:29












              • 1





                (+1) One other thing I would add is that if OP does decide to do this, I would strongly advise they try to get something like a pure ML co-advisor

                – Cliff AB
                Mar 27 at 17:49











              • Yes, guess I didn't explicitly say the co-supervisor should be from ML rather than medicine, but that is a key point.

                – cag51
                Mar 27 at 19:07











              • Thank you very much for this answer. Particularly for the ML specific technical points.

                – MHilton
                Mar 27 at 23:06






              • 2





                "You would essentially be on your own to find a technique that is interesting from an ML perspective and apply it to a problem that is interesting from a medical perspective" -- does the research have to be novel in all dimensions for it to be worthy of a PhD? As an example, imagine if using bog-standard ML techniques they find they can detect cancer ridiculously earlier and more reliably than using standard techniques. (However, it is true that "I ran bog-standard ML on some images, here is 100 pages of proof that it wasn't useful" might not be a stellar PhD thesis)

                – Yakk
                Mar 28 at 13:51












              • @Yakk makes a very important point. Addressing the open problems in machine learning may not easily lead to anything useful in your particular application field. Both are quite mature fields by now, as is the combination of them. And further you may find that even just applying non-novel methods to your data is far harder to get working than the literature claims.

                – A Simple Algorithm
                Mar 28 at 15:29







              1




              1





              (+1) One other thing I would add is that if OP does decide to do this, I would strongly advise they try to get something like a pure ML co-advisor

              – Cliff AB
              Mar 27 at 17:49





              (+1) One other thing I would add is that if OP does decide to do this, I would strongly advise they try to get something like a pure ML co-advisor

              – Cliff AB
              Mar 27 at 17:49













              Yes, guess I didn't explicitly say the co-supervisor should be from ML rather than medicine, but that is a key point.

              – cag51
              Mar 27 at 19:07





              Yes, guess I didn't explicitly say the co-supervisor should be from ML rather than medicine, but that is a key point.

              – cag51
              Mar 27 at 19:07













              Thank you very much for this answer. Particularly for the ML specific technical points.

              – MHilton
              Mar 27 at 23:06





              Thank you very much for this answer. Particularly for the ML specific technical points.

              – MHilton
              Mar 27 at 23:06




              2




              2





              "You would essentially be on your own to find a technique that is interesting from an ML perspective and apply it to a problem that is interesting from a medical perspective" -- does the research have to be novel in all dimensions for it to be worthy of a PhD? As an example, imagine if using bog-standard ML techniques they find they can detect cancer ridiculously earlier and more reliably than using standard techniques. (However, it is true that "I ran bog-standard ML on some images, here is 100 pages of proof that it wasn't useful" might not be a stellar PhD thesis)

              – Yakk
              Mar 28 at 13:51






              "You would essentially be on your own to find a technique that is interesting from an ML perspective and apply it to a problem that is interesting from a medical perspective" -- does the research have to be novel in all dimensions for it to be worthy of a PhD? As an example, imagine if using bog-standard ML techniques they find they can detect cancer ridiculously earlier and more reliably than using standard techniques. (However, it is true that "I ran bog-standard ML on some images, here is 100 pages of proof that it wasn't useful" might not be a stellar PhD thesis)

              – Yakk
              Mar 28 at 13:51














              @Yakk makes a very important point. Addressing the open problems in machine learning may not easily lead to anything useful in your particular application field. Both are quite mature fields by now, as is the combination of them. And further you may find that even just applying non-novel methods to your data is far harder to get working than the literature claims.

              – A Simple Algorithm
              Mar 28 at 15:29





              @Yakk makes a very important point. Addressing the open problems in machine learning may not easily lead to anything useful in your particular application field. Both are quite mature fields by now, as is the combination of them. And further you may find that even just applying non-novel methods to your data is far harder to get working than the literature claims.

              – A Simple Algorithm
              Mar 28 at 15:29











              14














              Do you want to design a tool that can build many things, or learn how best to use the available tools to build a house?



              Do you want to do a PhD in machine learning or are you trying to use machine learning to solve problems in medical imaging?



              In the first case I would agree with @cag51. Without a Deep Learning supervisor, it would be challenging and also unlikely your PhD would reach its full potential.



              However, if you are more interested in finding novel and practical uses for existing machine learning techniques in order to improve the field of medical imaging then the lack of specialist supervisor is less important. There is a startling amount of low hanging fruit which requires only a broad conceptual understanding of machine learning combined with domain-specific expertise (e.g medical imaging).



              After your first paper/project you will no doubt discover a host of problems that are specific to your domain area which require further research and in-depth knowledge of the domain area which can be provided by your primary supervisor.



              It could be a great opportunity to help the field take advantage of benefits provided by machine learning in a very applied and practical way as well as carve out your own niche in academia.






              share|improve this answer


















              • 1





                +1 ... while even getting "state-of-the-art" results with existing ML techniques is hard to do totally from scratch (see the first point on my answer), I agree that my third point (and maybe parts of my second point) don't apply if OP's real interests are in medicine. As you say in your last paragraph, I think whoever takes this position could likely become an "expert" in both.

                – cag51
                Mar 27 at 19:10











              • A problem is that without a ML expert helping, identifying what kind of ML fruit-picker to use, or even which fruit is low-hanging, could be difficult.

                – Yakk
                Mar 28 at 13:53











              • +1 for extending the analogy! However, I think that although that is theoretically true, it is unlikely to be true in real life. 'what are we trying to do and do we have data?' Is the biggest question in any problem. Once that is known, choose from a handful of algos and work from there. I'm not knocking the value of an ML supervisor, but I think that problem solving with ML is less mysterious and more accessible than a lot of us would like to believe.

                – Jonno Bourne
                Mar 29 at 8:21
















              14














              Do you want to design a tool that can build many things, or learn how best to use the available tools to build a house?



              Do you want to do a PhD in machine learning or are you trying to use machine learning to solve problems in medical imaging?



              In the first case I would agree with @cag51. Without a Deep Learning supervisor, it would be challenging and also unlikely your PhD would reach its full potential.



              However, if you are more interested in finding novel and practical uses for existing machine learning techniques in order to improve the field of medical imaging then the lack of specialist supervisor is less important. There is a startling amount of low hanging fruit which requires only a broad conceptual understanding of machine learning combined with domain-specific expertise (e.g medical imaging).



              After your first paper/project you will no doubt discover a host of problems that are specific to your domain area which require further research and in-depth knowledge of the domain area which can be provided by your primary supervisor.



              It could be a great opportunity to help the field take advantage of benefits provided by machine learning in a very applied and practical way as well as carve out your own niche in academia.






              share|improve this answer


















              • 1





                +1 ... while even getting "state-of-the-art" results with existing ML techniques is hard to do totally from scratch (see the first point on my answer), I agree that my third point (and maybe parts of my second point) don't apply if OP's real interests are in medicine. As you say in your last paragraph, I think whoever takes this position could likely become an "expert" in both.

                – cag51
                Mar 27 at 19:10











              • A problem is that without a ML expert helping, identifying what kind of ML fruit-picker to use, or even which fruit is low-hanging, could be difficult.

                – Yakk
                Mar 28 at 13:53











              • +1 for extending the analogy! However, I think that although that is theoretically true, it is unlikely to be true in real life. 'what are we trying to do and do we have data?' Is the biggest question in any problem. Once that is known, choose from a handful of algos and work from there. I'm not knocking the value of an ML supervisor, but I think that problem solving with ML is less mysterious and more accessible than a lot of us would like to believe.

                – Jonno Bourne
                Mar 29 at 8:21














              14












              14








              14







              Do you want to design a tool that can build many things, or learn how best to use the available tools to build a house?



              Do you want to do a PhD in machine learning or are you trying to use machine learning to solve problems in medical imaging?



              In the first case I would agree with @cag51. Without a Deep Learning supervisor, it would be challenging and also unlikely your PhD would reach its full potential.



              However, if you are more interested in finding novel and practical uses for existing machine learning techniques in order to improve the field of medical imaging then the lack of specialist supervisor is less important. There is a startling amount of low hanging fruit which requires only a broad conceptual understanding of machine learning combined with domain-specific expertise (e.g medical imaging).



              After your first paper/project you will no doubt discover a host of problems that are specific to your domain area which require further research and in-depth knowledge of the domain area which can be provided by your primary supervisor.



              It could be a great opportunity to help the field take advantage of benefits provided by machine learning in a very applied and practical way as well as carve out your own niche in academia.






              share|improve this answer













              Do you want to design a tool that can build many things, or learn how best to use the available tools to build a house?



              Do you want to do a PhD in machine learning or are you trying to use machine learning to solve problems in medical imaging?



              In the first case I would agree with @cag51. Without a Deep Learning supervisor, it would be challenging and also unlikely your PhD would reach its full potential.



              However, if you are more interested in finding novel and practical uses for existing machine learning techniques in order to improve the field of medical imaging then the lack of specialist supervisor is less important. There is a startling amount of low hanging fruit which requires only a broad conceptual understanding of machine learning combined with domain-specific expertise (e.g medical imaging).



              After your first paper/project you will no doubt discover a host of problems that are specific to your domain area which require further research and in-depth knowledge of the domain area which can be provided by your primary supervisor.



              It could be a great opportunity to help the field take advantage of benefits provided by machine learning in a very applied and practical way as well as carve out your own niche in academia.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered Mar 27 at 10:20









              Jonno BourneJonno Bourne

              2414




              2414







              • 1





                +1 ... while even getting "state-of-the-art" results with existing ML techniques is hard to do totally from scratch (see the first point on my answer), I agree that my third point (and maybe parts of my second point) don't apply if OP's real interests are in medicine. As you say in your last paragraph, I think whoever takes this position could likely become an "expert" in both.

                – cag51
                Mar 27 at 19:10











              • A problem is that without a ML expert helping, identifying what kind of ML fruit-picker to use, or even which fruit is low-hanging, could be difficult.

                – Yakk
                Mar 28 at 13:53











              • +1 for extending the analogy! However, I think that although that is theoretically true, it is unlikely to be true in real life. 'what are we trying to do and do we have data?' Is the biggest question in any problem. Once that is known, choose from a handful of algos and work from there. I'm not knocking the value of an ML supervisor, but I think that problem solving with ML is less mysterious and more accessible than a lot of us would like to believe.

                – Jonno Bourne
                Mar 29 at 8:21













              • 1





                +1 ... while even getting "state-of-the-art" results with existing ML techniques is hard to do totally from scratch (see the first point on my answer), I agree that my third point (and maybe parts of my second point) don't apply if OP's real interests are in medicine. As you say in your last paragraph, I think whoever takes this position could likely become an "expert" in both.

                – cag51
                Mar 27 at 19:10











              • A problem is that without a ML expert helping, identifying what kind of ML fruit-picker to use, or even which fruit is low-hanging, could be difficult.

                – Yakk
                Mar 28 at 13:53











              • +1 for extending the analogy! However, I think that although that is theoretically true, it is unlikely to be true in real life. 'what are we trying to do and do we have data?' Is the biggest question in any problem. Once that is known, choose from a handful of algos and work from there. I'm not knocking the value of an ML supervisor, but I think that problem solving with ML is less mysterious and more accessible than a lot of us would like to believe.

                – Jonno Bourne
                Mar 29 at 8:21








              1




              1





              +1 ... while even getting "state-of-the-art" results with existing ML techniques is hard to do totally from scratch (see the first point on my answer), I agree that my third point (and maybe parts of my second point) don't apply if OP's real interests are in medicine. As you say in your last paragraph, I think whoever takes this position could likely become an "expert" in both.

              – cag51
              Mar 27 at 19:10





              +1 ... while even getting "state-of-the-art" results with existing ML techniques is hard to do totally from scratch (see the first point on my answer), I agree that my third point (and maybe parts of my second point) don't apply if OP's real interests are in medicine. As you say in your last paragraph, I think whoever takes this position could likely become an "expert" in both.

              – cag51
              Mar 27 at 19:10













              A problem is that without a ML expert helping, identifying what kind of ML fruit-picker to use, or even which fruit is low-hanging, could be difficult.

              – Yakk
              Mar 28 at 13:53





              A problem is that without a ML expert helping, identifying what kind of ML fruit-picker to use, or even which fruit is low-hanging, could be difficult.

              – Yakk
              Mar 28 at 13:53













              +1 for extending the analogy! However, I think that although that is theoretically true, it is unlikely to be true in real life. 'what are we trying to do and do we have data?' Is the biggest question in any problem. Once that is known, choose from a handful of algos and work from there. I'm not knocking the value of an ML supervisor, but I think that problem solving with ML is less mysterious and more accessible than a lot of us would like to believe.

              – Jonno Bourne
              Mar 29 at 8:21






              +1 for extending the analogy! However, I think that although that is theoretically true, it is unlikely to be true in real life. 'what are we trying to do and do we have data?' Is the biggest question in any problem. Once that is known, choose from a handful of algos and work from there. I'm not knocking the value of an ML supervisor, but I think that problem solving with ML is less mysterious and more accessible than a lot of us would like to believe.

              – Jonno Bourne
              Mar 29 at 8:21












              6














              Sounds like a great fit, with some options for different paths post-Ph.D. along with some fallback if things don't work out perfectly. I wouldn't be super concerned about having all kinds of supervision by a deep expert. It is common for grad students to do their own work without significant apprenticeship by the "advisor" (grant writer). As long as you are careful to look out for yourself by sticking to tractable problem(s), it should be fine.



              In addition, you seem to have thought things out and expressed them well. And some of your comments (like department work in signal processing) show enough awareness that you seem to be able to look out for yourself and drive your own research.






              share|improve this answer



























                6














                Sounds like a great fit, with some options for different paths post-Ph.D. along with some fallback if things don't work out perfectly. I wouldn't be super concerned about having all kinds of supervision by a deep expert. It is common for grad students to do their own work without significant apprenticeship by the "advisor" (grant writer). As long as you are careful to look out for yourself by sticking to tractable problem(s), it should be fine.



                In addition, you seem to have thought things out and expressed them well. And some of your comments (like department work in signal processing) show enough awareness that you seem to be able to look out for yourself and drive your own research.






                share|improve this answer

























                  6












                  6








                  6







                  Sounds like a great fit, with some options for different paths post-Ph.D. along with some fallback if things don't work out perfectly. I wouldn't be super concerned about having all kinds of supervision by a deep expert. It is common for grad students to do their own work without significant apprenticeship by the "advisor" (grant writer). As long as you are careful to look out for yourself by sticking to tractable problem(s), it should be fine.



                  In addition, you seem to have thought things out and expressed them well. And some of your comments (like department work in signal processing) show enough awareness that you seem to be able to look out for yourself and drive your own research.






                  share|improve this answer













                  Sounds like a great fit, with some options for different paths post-Ph.D. along with some fallback if things don't work out perfectly. I wouldn't be super concerned about having all kinds of supervision by a deep expert. It is common for grad students to do their own work without significant apprenticeship by the "advisor" (grant writer). As long as you are careful to look out for yourself by sticking to tractable problem(s), it should be fine.



                  In addition, you seem to have thought things out and expressed them well. And some of your comments (like department work in signal processing) show enough awareness that you seem to be able to look out for yourself and drive your own research.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Mar 27 at 0:17









                  guestguest

                  3013




                  3013





















                      5














                      I agree with Jonno Bourne's answer, but I don't have enough reputation to comment.



                      I just want to add that I was in this same situation during my PhD. Specifically, I was in the second scenario, so if this is what you pursue, I can say from my experience that it is perfectly viable. You will just have to learn a lot of stuff on your own, but this is the cool part of a PhD, isn't it?



                      If instead you want to do a PhD on machine learning, as opposed as using machine learning, then I would too consider looking for a (co-)supervisor with ML expertise.






                      share|improve this answer



























                        5














                        I agree with Jonno Bourne's answer, but I don't have enough reputation to comment.



                        I just want to add that I was in this same situation during my PhD. Specifically, I was in the second scenario, so if this is what you pursue, I can say from my experience that it is perfectly viable. You will just have to learn a lot of stuff on your own, but this is the cool part of a PhD, isn't it?



                        If instead you want to do a PhD on machine learning, as opposed as using machine learning, then I would too consider looking for a (co-)supervisor with ML expertise.






                        share|improve this answer

























                          5












                          5








                          5







                          I agree with Jonno Bourne's answer, but I don't have enough reputation to comment.



                          I just want to add that I was in this same situation during my PhD. Specifically, I was in the second scenario, so if this is what you pursue, I can say from my experience that it is perfectly viable. You will just have to learn a lot of stuff on your own, but this is the cool part of a PhD, isn't it?



                          If instead you want to do a PhD on machine learning, as opposed as using machine learning, then I would too consider looking for a (co-)supervisor with ML expertise.






                          share|improve this answer













                          I agree with Jonno Bourne's answer, but I don't have enough reputation to comment.



                          I just want to add that I was in this same situation during my PhD. Specifically, I was in the second scenario, so if this is what you pursue, I can say from my experience that it is perfectly viable. You will just have to learn a lot of stuff on your own, but this is the cool part of a PhD, isn't it?



                          If instead you want to do a PhD on machine learning, as opposed as using machine learning, then I would too consider looking for a (co-)supervisor with ML expertise.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Mar 27 at 11:02









                          nanakinanaki

                          512




                          512





















                              4














                              Yes, this can be possible to do. I would not consider it particularly risky.



                              One of my professors when I was a MSc student did almost exactly this when he did his PhD once upon a time. He specialized in one learning method and built applications for it in his main supervisors field.



                              But it was long time before "deep learning" existed and subsequent ML-trends appeared. So I imagine it should hardly be more difficult now to motivate than it was then.



                              The idea of trying to get a co-supervisor with good skills in learning seems like very good advice.






                              share|improve this answer



























                                4














                                Yes, this can be possible to do. I would not consider it particularly risky.



                                One of my professors when I was a MSc student did almost exactly this when he did his PhD once upon a time. He specialized in one learning method and built applications for it in his main supervisors field.



                                But it was long time before "deep learning" existed and subsequent ML-trends appeared. So I imagine it should hardly be more difficult now to motivate than it was then.



                                The idea of trying to get a co-supervisor with good skills in learning seems like very good advice.






                                share|improve this answer

























                                  4












                                  4








                                  4







                                  Yes, this can be possible to do. I would not consider it particularly risky.



                                  One of my professors when I was a MSc student did almost exactly this when he did his PhD once upon a time. He specialized in one learning method and built applications for it in his main supervisors field.



                                  But it was long time before "deep learning" existed and subsequent ML-trends appeared. So I imagine it should hardly be more difficult now to motivate than it was then.



                                  The idea of trying to get a co-supervisor with good skills in learning seems like very good advice.






                                  share|improve this answer













                                  Yes, this can be possible to do. I would not consider it particularly risky.



                                  One of my professors when I was a MSc student did almost exactly this when he did his PhD once upon a time. He specialized in one learning method and built applications for it in his main supervisors field.



                                  But it was long time before "deep learning" existed and subsequent ML-trends appeared. So I imagine it should hardly be more difficult now to motivate than it was then.



                                  The idea of trying to get a co-supervisor with good skills in learning seems like very good advice.







                                  share|improve this answer












                                  share|improve this answer



                                  share|improve this answer










                                  answered Mar 27 at 18:05









                                  mathreadlermathreadler

                                  1,119510




                                  1,119510





















                                      4














                                      I recently graduated with a PhD in Plant Breeding. At my university, an increasing number of students are working with building predictive machines that their major advisers have no experience with. Most of us (myself included) were first students in plant breeding that applied predictive machines in largely technical manner, producing fairly derivative research from a predictive perspective, but was novel based on the crop is was applied to. The students that excelled in this situation the best were those with significant modelling experience to begin with, and almost all had completed Masters. If you go this route, you'll need to be more self-directed than average, and prepare to teach your major advisor as much as they teach you. I struggled a lot with the lack of clear direction from my major advisor, but it was ultimately worth it, as it opened up more options than would have been available if I took a more traditional path.






                                      share|improve this answer



























                                        4














                                        I recently graduated with a PhD in Plant Breeding. At my university, an increasing number of students are working with building predictive machines that their major advisers have no experience with. Most of us (myself included) were first students in plant breeding that applied predictive machines in largely technical manner, producing fairly derivative research from a predictive perspective, but was novel based on the crop is was applied to. The students that excelled in this situation the best were those with significant modelling experience to begin with, and almost all had completed Masters. If you go this route, you'll need to be more self-directed than average, and prepare to teach your major advisor as much as they teach you. I struggled a lot with the lack of clear direction from my major advisor, but it was ultimately worth it, as it opened up more options than would have been available if I took a more traditional path.






                                        share|improve this answer

























                                          4












                                          4








                                          4







                                          I recently graduated with a PhD in Plant Breeding. At my university, an increasing number of students are working with building predictive machines that their major advisers have no experience with. Most of us (myself included) were first students in plant breeding that applied predictive machines in largely technical manner, producing fairly derivative research from a predictive perspective, but was novel based on the crop is was applied to. The students that excelled in this situation the best were those with significant modelling experience to begin with, and almost all had completed Masters. If you go this route, you'll need to be more self-directed than average, and prepare to teach your major advisor as much as they teach you. I struggled a lot with the lack of clear direction from my major advisor, but it was ultimately worth it, as it opened up more options than would have been available if I took a more traditional path.






                                          share|improve this answer













                                          I recently graduated with a PhD in Plant Breeding. At my university, an increasing number of students are working with building predictive machines that their major advisers have no experience with. Most of us (myself included) were first students in plant breeding that applied predictive machines in largely technical manner, producing fairly derivative research from a predictive perspective, but was novel based on the crop is was applied to. The students that excelled in this situation the best were those with significant modelling experience to begin with, and almost all had completed Masters. If you go this route, you'll need to be more self-directed than average, and prepare to teach your major advisor as much as they teach you. I struggled a lot with the lack of clear direction from my major advisor, but it was ultimately worth it, as it opened up more options than would have been available if I took a more traditional path.







                                          share|improve this answer












                                          share|improve this answer



                                          share|improve this answer










                                          answered Mar 27 at 18:45









                                          Brett BurdoBrett Burdo

                                          411




                                          411





















                                              2














                                              By undertaking a PhD in a field you are pursuing an interest in a field you just don't want to know more about, but you want to become an expert in. Your supervisor should be someone who can effectively guide you through this field and, when needed, teach you.



                                              PhDs are difficult and to give yourself the chance of learning the most possible I would embed yourself within a ML research group so you can learn from the best, rather than stumbling through the field yourself.



                                              While co-supervision is an option, my experience of it is it often does not work, with the student feeling stranded between two supervisors who each mutually see the student as the others problem. Great supervisors could work in synergy, but unless you have a way of evaluating this before you start you would be taking a gamble.



                                              From the supervisors perspective, what they need is to collaborate with an already established ML research group or bring in a Postdoctoral researcher with a PhD in a relevant ML sub-field. I think this is more likely to be a success and less risky for everyone involved.



                                              On the matter of funding: Unless you are extremely wealthy don't consider doing a PhD without funding. There are many PhDs out there with funding and not enough good people to do them...



                                              Closing statement:



                                              If you consider yourself an ML expert and want to learn more about medical imaging, do the PhD with the mentioned supervisor. If you want to become an expert in ML and maximise your chances of success in an academic career then undertake a PhD with the best ML research group you can get a funded PhD with. Save the cross-field collaboration for your post-doc or latter end of your PhD.



                                              No matter what decision you make, doing a PhD is a great privilege, so make the most of it and don't look back!






                                              share|improve this answer



























                                                2














                                                By undertaking a PhD in a field you are pursuing an interest in a field you just don't want to know more about, but you want to become an expert in. Your supervisor should be someone who can effectively guide you through this field and, when needed, teach you.



                                                PhDs are difficult and to give yourself the chance of learning the most possible I would embed yourself within a ML research group so you can learn from the best, rather than stumbling through the field yourself.



                                                While co-supervision is an option, my experience of it is it often does not work, with the student feeling stranded between two supervisors who each mutually see the student as the others problem. Great supervisors could work in synergy, but unless you have a way of evaluating this before you start you would be taking a gamble.



                                                From the supervisors perspective, what they need is to collaborate with an already established ML research group or bring in a Postdoctoral researcher with a PhD in a relevant ML sub-field. I think this is more likely to be a success and less risky for everyone involved.



                                                On the matter of funding: Unless you are extremely wealthy don't consider doing a PhD without funding. There are many PhDs out there with funding and not enough good people to do them...



                                                Closing statement:



                                                If you consider yourself an ML expert and want to learn more about medical imaging, do the PhD with the mentioned supervisor. If you want to become an expert in ML and maximise your chances of success in an academic career then undertake a PhD with the best ML research group you can get a funded PhD with. Save the cross-field collaboration for your post-doc or latter end of your PhD.



                                                No matter what decision you make, doing a PhD is a great privilege, so make the most of it and don't look back!






                                                share|improve this answer

























                                                  2












                                                  2








                                                  2







                                                  By undertaking a PhD in a field you are pursuing an interest in a field you just don't want to know more about, but you want to become an expert in. Your supervisor should be someone who can effectively guide you through this field and, when needed, teach you.



                                                  PhDs are difficult and to give yourself the chance of learning the most possible I would embed yourself within a ML research group so you can learn from the best, rather than stumbling through the field yourself.



                                                  While co-supervision is an option, my experience of it is it often does not work, with the student feeling stranded between two supervisors who each mutually see the student as the others problem. Great supervisors could work in synergy, but unless you have a way of evaluating this before you start you would be taking a gamble.



                                                  From the supervisors perspective, what they need is to collaborate with an already established ML research group or bring in a Postdoctoral researcher with a PhD in a relevant ML sub-field. I think this is more likely to be a success and less risky for everyone involved.



                                                  On the matter of funding: Unless you are extremely wealthy don't consider doing a PhD without funding. There are many PhDs out there with funding and not enough good people to do them...



                                                  Closing statement:



                                                  If you consider yourself an ML expert and want to learn more about medical imaging, do the PhD with the mentioned supervisor. If you want to become an expert in ML and maximise your chances of success in an academic career then undertake a PhD with the best ML research group you can get a funded PhD with. Save the cross-field collaboration for your post-doc or latter end of your PhD.



                                                  No matter what decision you make, doing a PhD is a great privilege, so make the most of it and don't look back!






                                                  share|improve this answer













                                                  By undertaking a PhD in a field you are pursuing an interest in a field you just don't want to know more about, but you want to become an expert in. Your supervisor should be someone who can effectively guide you through this field and, when needed, teach you.



                                                  PhDs are difficult and to give yourself the chance of learning the most possible I would embed yourself within a ML research group so you can learn from the best, rather than stumbling through the field yourself.



                                                  While co-supervision is an option, my experience of it is it often does not work, with the student feeling stranded between two supervisors who each mutually see the student as the others problem. Great supervisors could work in synergy, but unless you have a way of evaluating this before you start you would be taking a gamble.



                                                  From the supervisors perspective, what they need is to collaborate with an already established ML research group or bring in a Postdoctoral researcher with a PhD in a relevant ML sub-field. I think this is more likely to be a success and less risky for everyone involved.



                                                  On the matter of funding: Unless you are extremely wealthy don't consider doing a PhD without funding. There are many PhDs out there with funding and not enough good people to do them...



                                                  Closing statement:



                                                  If you consider yourself an ML expert and want to learn more about medical imaging, do the PhD with the mentioned supervisor. If you want to become an expert in ML and maximise your chances of success in an academic career then undertake a PhD with the best ML research group you can get a funded PhD with. Save the cross-field collaboration for your post-doc or latter end of your PhD.



                                                  No matter what decision you make, doing a PhD is a great privilege, so make the most of it and don't look back!







                                                  share|improve this answer












                                                  share|improve this answer



                                                  share|improve this answer










                                                  answered Mar 28 at 8:32









                                                  FChmFChm

                                                  1213




                                                  1213





















                                                      0














                                                      Important questions to answer for yourself:
                                                      1. Jonno Bourne's question of what area do you want to focus on is important. In other words start with the end in mind.
                                                      2. Most of what you learn will not be from your prospective supervisor and his recent experience with ML is not very important. Are you someone comfortable defining your own path?
                                                      3. What do other graduate students working with your prospective supervisor think of him?
                                                      This is important. He may want a particular outcome and will limit your investigations or he may encourage creativity and let you decide how you can contribute.



                                                      Funding for my RA was very important and it gave me peace of mind.






                                                      share|improve this answer



























                                                        0














                                                        Important questions to answer for yourself:
                                                        1. Jonno Bourne's question of what area do you want to focus on is important. In other words start with the end in mind.
                                                        2. Most of what you learn will not be from your prospective supervisor and his recent experience with ML is not very important. Are you someone comfortable defining your own path?
                                                        3. What do other graduate students working with your prospective supervisor think of him?
                                                        This is important. He may want a particular outcome and will limit your investigations or he may encourage creativity and let you decide how you can contribute.



                                                        Funding for my RA was very important and it gave me peace of mind.






                                                        share|improve this answer

























                                                          0












                                                          0








                                                          0







                                                          Important questions to answer for yourself:
                                                          1. Jonno Bourne's question of what area do you want to focus on is important. In other words start with the end in mind.
                                                          2. Most of what you learn will not be from your prospective supervisor and his recent experience with ML is not very important. Are you someone comfortable defining your own path?
                                                          3. What do other graduate students working with your prospective supervisor think of him?
                                                          This is important. He may want a particular outcome and will limit your investigations or he may encourage creativity and let you decide how you can contribute.



                                                          Funding for my RA was very important and it gave me peace of mind.






                                                          share|improve this answer













                                                          Important questions to answer for yourself:
                                                          1. Jonno Bourne's question of what area do you want to focus on is important. In other words start with the end in mind.
                                                          2. Most of what you learn will not be from your prospective supervisor and his recent experience with ML is not very important. Are you someone comfortable defining your own path?
                                                          3. What do other graduate students working with your prospective supervisor think of him?
                                                          This is important. He may want a particular outcome and will limit your investigations or he may encourage creativity and let you decide how you can contribute.



                                                          Funding for my RA was very important and it gave me peace of mind.







                                                          share|improve this answer












                                                          share|improve this answer



                                                          share|improve this answer










                                                          answered Mar 27 at 18:51









                                                          Craig BaysingerCraig Baysinger

                                                          1




                                                          1













                                                              Popular posts from this blog

                                                              Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                                                              Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                                                              Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?