How to determine number of leaves in decision tree analysis? The Next CEO of Stack Overflow2019 Community Moderator ElectionDecision tree or logistic regression?How is cross validation used to prune a decision treeOrdinal feature in decision treeForecasting: How Decision Tree work?Decision tree orderingWhat are limitations of decision tree approaches to data analysis?Decision Trees Nodes vs Leaves DefinitionMulticollinearity in Decision TreeDisadvantage of decision treeHow to extract the sample split (values) of decision tree leaves ( terminal nodes) applying h2o library

Mathematica command that allows it to read my intentions

Is this a new Fibonacci Identity?

Gauss' Posthumous Publications?

Arrows in tikz Markov chain diagram overlap

What is the difference between 'contrib' and 'non-free' packages repositories?

Find a path from s to t using as few red nodes as possible

Direct Implications Between USA and UK in Event of No-Deal Brexit

How dangerous is XSS

Why do we say “un seul M” and not “une seule M” even though M is a “consonne”?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Ising model simulation

How to pronounce fünf in 45

How can a day be of 24 hours?

Car headlights in a world without electricity

Is a linearly independent set whose span is dense a Schauder basis?

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version

How do I secure a TV wall mount?

Is it a bad idea to plug the other end of ESD strap to wall ground?

Does Germany produce more waste than the US?

Is there a rule of thumb for determining the amount one should accept for a settlement offer?

How can the PCs determine if an item is a phylactery?

How badly should I try to prevent a user from XSSing themselves?

Does int main() need a declaration on C++?

Finitely generated matrix groups whose eigenvalues are all algebraic



How to determine number of leaves in decision tree analysis?



The Next CEO of Stack Overflow
2019 Community Moderator ElectionDecision tree or logistic regression?How is cross validation used to prune a decision treeOrdinal feature in decision treeForecasting: How Decision Tree work?Decision tree orderingWhat are limitations of decision tree approaches to data analysis?Decision Trees Nodes vs Leaves DefinitionMulticollinearity in Decision TreeDisadvantage of decision treeHow to extract the sample split (values) of decision tree leaves ( terminal nodes) applying h2o library










1












$begingroup$


Would be grateful if some expert on the forum can help me understand how to decide optimum number of leaves in a decision tree analysis.



I am using SAS and if I supply leaves=6 in my model then miss-classification rates for validation & training data sets are 18.6% & 18.8% respectively. And SAS lists 5 variables which are significant.



And if I don't supply leaves count in the code and let SAS decide it, then SAS after pruning takes 10 as leaves count and miss-classification rates for validation & training data sets are 17.5% & 16.9% respectively. And SAS lists 6 variables which are significant.



Now that the miss-classification rates have reduced & trees after pruning have increased from 4 to 10, is it a good thing or it indicates overfitting?



Looking forward to opinions of experts in this group. Thanks










share|improve this question











$endgroup$
















    1












    $begingroup$


    Would be grateful if some expert on the forum can help me understand how to decide optimum number of leaves in a decision tree analysis.



    I am using SAS and if I supply leaves=6 in my model then miss-classification rates for validation & training data sets are 18.6% & 18.8% respectively. And SAS lists 5 variables which are significant.



    And if I don't supply leaves count in the code and let SAS decide it, then SAS after pruning takes 10 as leaves count and miss-classification rates for validation & training data sets are 17.5% & 16.9% respectively. And SAS lists 6 variables which are significant.



    Now that the miss-classification rates have reduced & trees after pruning have increased from 4 to 10, is it a good thing or it indicates overfitting?



    Looking forward to opinions of experts in this group. Thanks










    share|improve this question











    $endgroup$














      1












      1








      1


      3



      $begingroup$


      Would be grateful if some expert on the forum can help me understand how to decide optimum number of leaves in a decision tree analysis.



      I am using SAS and if I supply leaves=6 in my model then miss-classification rates for validation & training data sets are 18.6% & 18.8% respectively. And SAS lists 5 variables which are significant.



      And if I don't supply leaves count in the code and let SAS decide it, then SAS after pruning takes 10 as leaves count and miss-classification rates for validation & training data sets are 17.5% & 16.9% respectively. And SAS lists 6 variables which are significant.



      Now that the miss-classification rates have reduced & trees after pruning have increased from 4 to 10, is it a good thing or it indicates overfitting?



      Looking forward to opinions of experts in this group. Thanks










      share|improve this question











      $endgroup$




      Would be grateful if some expert on the forum can help me understand how to decide optimum number of leaves in a decision tree analysis.



      I am using SAS and if I supply leaves=6 in my model then miss-classification rates for validation & training data sets are 18.6% & 18.8% respectively. And SAS lists 5 variables which are significant.



      And if I don't supply leaves count in the code and let SAS decide it, then SAS after pruning takes 10 as leaves count and miss-classification rates for validation & training data sets are 17.5% & 16.9% respectively. And SAS lists 6 variables which are significant.



      Now that the miss-classification rates have reduced & trees after pruning have increased from 4 to 10, is it a good thing or it indicates overfitting?



      Looking forward to opinions of experts in this group. Thanks







      classification decision-trees cross-validation






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Mar 27 at 5:54







      Vikrant Arora

















      asked Mar 25 at 13:33









      Vikrant AroraVikrant Arora

      82




      82




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I'll assume that your test and validation datasets have been created appropriately (e.g. no observations are in both test and validation sets, both sets are of appropriate size, etc.).



          Overfitting means that your model fits very well to your training data but does not generalise well on unseen data (i.e. will perform poorly on your validation dataset).



          Your misclassification rate on the validation set (unseen data) is decreasing, and is therefore a good thing. However, if the misclassification rate on the validation set were to increase, that would indicate overfitting.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thanks Brad, I understand now. Really appreciate your help. Have a nice day.
            $endgroup$
            – Vikrant Arora
            Mar 28 at 10:47










          • $begingroup$
            No problem. If you're happy with the solution, then please mark as the answer so the question can be closed.
            $endgroup$
            – bradS
            Mar 28 at 14:43











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47940%2fhow-to-determine-number-of-leaves-in-decision-tree-analysis%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          I'll assume that your test and validation datasets have been created appropriately (e.g. no observations are in both test and validation sets, both sets are of appropriate size, etc.).



          Overfitting means that your model fits very well to your training data but does not generalise well on unseen data (i.e. will perform poorly on your validation dataset).



          Your misclassification rate on the validation set (unseen data) is decreasing, and is therefore a good thing. However, if the misclassification rate on the validation set were to increase, that would indicate overfitting.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thanks Brad, I understand now. Really appreciate your help. Have a nice day.
            $endgroup$
            – Vikrant Arora
            Mar 28 at 10:47










          • $begingroup$
            No problem. If you're happy with the solution, then please mark as the answer so the question can be closed.
            $endgroup$
            – bradS
            Mar 28 at 14:43















          0












          $begingroup$

          I'll assume that your test and validation datasets have been created appropriately (e.g. no observations are in both test and validation sets, both sets are of appropriate size, etc.).



          Overfitting means that your model fits very well to your training data but does not generalise well on unseen data (i.e. will perform poorly on your validation dataset).



          Your misclassification rate on the validation set (unseen data) is decreasing, and is therefore a good thing. However, if the misclassification rate on the validation set were to increase, that would indicate overfitting.






          share|improve this answer









          $endgroup$












          • $begingroup$
            Thanks Brad, I understand now. Really appreciate your help. Have a nice day.
            $endgroup$
            – Vikrant Arora
            Mar 28 at 10:47










          • $begingroup$
            No problem. If you're happy with the solution, then please mark as the answer so the question can be closed.
            $endgroup$
            – bradS
            Mar 28 at 14:43













          0












          0








          0





          $begingroup$

          I'll assume that your test and validation datasets have been created appropriately (e.g. no observations are in both test and validation sets, both sets are of appropriate size, etc.).



          Overfitting means that your model fits very well to your training data but does not generalise well on unseen data (i.e. will perform poorly on your validation dataset).



          Your misclassification rate on the validation set (unseen data) is decreasing, and is therefore a good thing. However, if the misclassification rate on the validation set were to increase, that would indicate overfitting.






          share|improve this answer









          $endgroup$



          I'll assume that your test and validation datasets have been created appropriately (e.g. no observations are in both test and validation sets, both sets are of appropriate size, etc.).



          Overfitting means that your model fits very well to your training data but does not generalise well on unseen data (i.e. will perform poorly on your validation dataset).



          Your misclassification rate on the validation set (unseen data) is decreasing, and is therefore a good thing. However, if the misclassification rate on the validation set were to increase, that would indicate overfitting.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Mar 27 at 9:46









          bradSbradS

          653113




          653113











          • $begingroup$
            Thanks Brad, I understand now. Really appreciate your help. Have a nice day.
            $endgroup$
            – Vikrant Arora
            Mar 28 at 10:47










          • $begingroup$
            No problem. If you're happy with the solution, then please mark as the answer so the question can be closed.
            $endgroup$
            – bradS
            Mar 28 at 14:43
















          • $begingroup$
            Thanks Brad, I understand now. Really appreciate your help. Have a nice day.
            $endgroup$
            – Vikrant Arora
            Mar 28 at 10:47










          • $begingroup$
            No problem. If you're happy with the solution, then please mark as the answer so the question can be closed.
            $endgroup$
            – bradS
            Mar 28 at 14:43















          $begingroup$
          Thanks Brad, I understand now. Really appreciate your help. Have a nice day.
          $endgroup$
          – Vikrant Arora
          Mar 28 at 10:47




          $begingroup$
          Thanks Brad, I understand now. Really appreciate your help. Have a nice day.
          $endgroup$
          – Vikrant Arora
          Mar 28 at 10:47












          $begingroup$
          No problem. If you're happy with the solution, then please mark as the answer so the question can be closed.
          $endgroup$
          – bradS
          Mar 28 at 14:43




          $begingroup$
          No problem. If you're happy with the solution, then please mark as the answer so the question can be closed.
          $endgroup$
          – bradS
          Mar 28 at 14:43

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47940%2fhow-to-determine-number-of-leaves-in-decision-tree-analysis%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Marja Vauras Lähteet | Aiheesta muualla | NavigointivalikkoMarja Vauras Turun yliopiston tutkimusportaalissaInfobox OKSuomalaisen Tiedeakatemian varsinaiset jäsenetKasvatustieteiden tiedekunnan dekaanit ja muu johtoMarja VaurasKoulutusvienti on kestävyys- ja ketteryyslaji (2.5.2017)laajentamallaWorldCat Identities0000 0001 0855 9405n86069603utb201588738523620927

          Which is better: GPT or RelGAN for text generation?2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task

          Is this part of the description of the Archfey warlock's Misty Escape feature redundant?When is entropic ward considered “used”?How does the reaction timing work for Wrath of the Storm? Can it potentially prevent the damage from the triggering attack?Does the Dark Arts Archlich warlock patrons's Arcane Invisibility activate every time you cast a level 1+ spell?When attacking while invisible, when exactly does invisibility break?Can I cast Hellish Rebuke on my turn?Do I have to “pre-cast” a reaction spell in order for it to be triggered?What happens if a Player Misty Escapes into an Invisible CreatureCan a reaction interrupt multiattack?Does the Fiend-patron warlock's Hurl Through Hell feature dispel effects that require the target to be on the same plane as the caster?What are you allowed to do while using the Warlock's Eldritch Master feature?