Least quadratic residue under GRH: an explicit bound Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?explicit lower bounds on $|L(1,chi)|$Explicit bound on $sum_Nmathfrak p leq xchi(mathfrak p)ln(Nmathfrak p)$Explicit bounds for exceptional zeros and/or $L(1,chi)$ for real $chi$Effective bound of $L(1,chi)$Property of Dirichlet characterOn a sequence of L-functions having same zeros in critical strip and GRHQuestion about the term $sum_ rho fracX^rhorho$ in the explicit formula of $sum_n leq X Lambda(n) chi(n)$Questions about the exceptional zeros of Dirichlet $L$-functionsPrime character sumsExplicit Version of the Burgess Theorem

Least quadratic residue under GRH: an explicit bound



Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?explicit lower bounds on $|L(1,chi)|$Explicit bound on $sum_Nmathfrak p leq xchi(mathfrak p)ln(Nmathfrak p)$Explicit bounds for exceptional zeros and/or $L(1,chi)$ for real $chi$Effective bound of $L(1,chi)$Property of Dirichlet characterOn a sequence of L-functions having same zeros in critical strip and GRHQuestion about the term $sum_ rho fracX^rhorho$ in the explicit formula of $sum_n leq X Lambda(n) chi(n)$Questions about the exceptional zeros of Dirichlet $L$-functionsPrime character sumsExplicit Version of the Burgess Theorem










10












$begingroup$


Let $m$ be a positive integer and $chi$ a primitive character mod $m$. Let $x$ be such that $chi(p)ne 1$ for all primes $p<x$. Assume GRH. How can one bound $x$ in terms of $m$ ? I do not need the best possible bound, but I need a good quality bound which is totally explicit in all parameters.



A related question: what is an explicit lower bound for $L(1,chi)$ under GRH?










share|cite|improve this question











$endgroup$
















    10












    $begingroup$


    Let $m$ be a positive integer and $chi$ a primitive character mod $m$. Let $x$ be such that $chi(p)ne 1$ for all primes $p<x$. Assume GRH. How can one bound $x$ in terms of $m$ ? I do not need the best possible bound, but I need a good quality bound which is totally explicit in all parameters.



    A related question: what is an explicit lower bound for $L(1,chi)$ under GRH?










    share|cite|improve this question











    $endgroup$














      10












      10








      10





      $begingroup$


      Let $m$ be a positive integer and $chi$ a primitive character mod $m$. Let $x$ be such that $chi(p)ne 1$ for all primes $p<x$. Assume GRH. How can one bound $x$ in terms of $m$ ? I do not need the best possible bound, but I need a good quality bound which is totally explicit in all parameters.



      A related question: what is an explicit lower bound for $L(1,chi)$ under GRH?










      share|cite|improve this question











      $endgroup$




      Let $m$ be a positive integer and $chi$ a primitive character mod $m$. Let $x$ be such that $chi(p)ne 1$ for all primes $p<x$. Assume GRH. How can one bound $x$ in terms of $m$ ? I do not need the best possible bound, but I need a good quality bound which is totally explicit in all parameters.



      A related question: what is an explicit lower bound for $L(1,chi)$ under GRH?







      nt.number-theory analytic-number-theory l-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 8 at 14:07









      YCor

      29.1k487141




      29.1k487141










      asked Apr 8 at 1:21









      Yuri BiluYuri Bilu

      835




      835




















          1 Answer
          1






          active

          oldest

          votes


















          21












          $begingroup$

          See the work of Lamzouri, Li, and Soundararajan (I link the arXiv version; the paper appeared in Math. Comp.). Assuming that $chi$ is a primitive quadratic character (as the title suggests) then Theorem 1.4 of that paper gives an explicit bound on the least prime quadratic residue on GRH. (Indeed that theorem gives an explicit bound on the least prime in any coset of a subgroup of $(Bbb Z/qBbb Z)^times$.) Theorem 1.5 there gives explicit upper and lower bounds for $|L(1,chi)|$ for any primitive character $chi pmod q$ (not necessarily quadratic).






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Lucia, many thanks! This is exactly what I am looking for!
            $endgroup$
            – Yuri Bilu
            Apr 8 at 2:37






          • 2




            $begingroup$
            @YuriBilu: If you like Lucia's answer, please accept it officially (so that it turns green). Thanks! (And welcome to MO!)
            $endgroup$
            – GH from MO
            Apr 8 at 9:30












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327447%2fleast-quadratic-residue-under-grh-an-explicit-bound%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          21












          $begingroup$

          See the work of Lamzouri, Li, and Soundararajan (I link the arXiv version; the paper appeared in Math. Comp.). Assuming that $chi$ is a primitive quadratic character (as the title suggests) then Theorem 1.4 of that paper gives an explicit bound on the least prime quadratic residue on GRH. (Indeed that theorem gives an explicit bound on the least prime in any coset of a subgroup of $(Bbb Z/qBbb Z)^times$.) Theorem 1.5 there gives explicit upper and lower bounds for $|L(1,chi)|$ for any primitive character $chi pmod q$ (not necessarily quadratic).






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Lucia, many thanks! This is exactly what I am looking for!
            $endgroup$
            – Yuri Bilu
            Apr 8 at 2:37






          • 2




            $begingroup$
            @YuriBilu: If you like Lucia's answer, please accept it officially (so that it turns green). Thanks! (And welcome to MO!)
            $endgroup$
            – GH from MO
            Apr 8 at 9:30
















          21












          $begingroup$

          See the work of Lamzouri, Li, and Soundararajan (I link the arXiv version; the paper appeared in Math. Comp.). Assuming that $chi$ is a primitive quadratic character (as the title suggests) then Theorem 1.4 of that paper gives an explicit bound on the least prime quadratic residue on GRH. (Indeed that theorem gives an explicit bound on the least prime in any coset of a subgroup of $(Bbb Z/qBbb Z)^times$.) Theorem 1.5 there gives explicit upper and lower bounds for $|L(1,chi)|$ for any primitive character $chi pmod q$ (not necessarily quadratic).






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            Lucia, many thanks! This is exactly what I am looking for!
            $endgroup$
            – Yuri Bilu
            Apr 8 at 2:37






          • 2




            $begingroup$
            @YuriBilu: If you like Lucia's answer, please accept it officially (so that it turns green). Thanks! (And welcome to MO!)
            $endgroup$
            – GH from MO
            Apr 8 at 9:30














          21












          21








          21





          $begingroup$

          See the work of Lamzouri, Li, and Soundararajan (I link the arXiv version; the paper appeared in Math. Comp.). Assuming that $chi$ is a primitive quadratic character (as the title suggests) then Theorem 1.4 of that paper gives an explicit bound on the least prime quadratic residue on GRH. (Indeed that theorem gives an explicit bound on the least prime in any coset of a subgroup of $(Bbb Z/qBbb Z)^times$.) Theorem 1.5 there gives explicit upper and lower bounds for $|L(1,chi)|$ for any primitive character $chi pmod q$ (not necessarily quadratic).






          share|cite|improve this answer









          $endgroup$



          See the work of Lamzouri, Li, and Soundararajan (I link the arXiv version; the paper appeared in Math. Comp.). Assuming that $chi$ is a primitive quadratic character (as the title suggests) then Theorem 1.4 of that paper gives an explicit bound on the least prime quadratic residue on GRH. (Indeed that theorem gives an explicit bound on the least prime in any coset of a subgroup of $(Bbb Z/qBbb Z)^times$.) Theorem 1.5 there gives explicit upper and lower bounds for $|L(1,chi)|$ for any primitive character $chi pmod q$ (not necessarily quadratic).







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 8 at 2:05









          LuciaLucia

          35.2k5151179




          35.2k5151179







          • 1




            $begingroup$
            Lucia, many thanks! This is exactly what I am looking for!
            $endgroup$
            – Yuri Bilu
            Apr 8 at 2:37






          • 2




            $begingroup$
            @YuriBilu: If you like Lucia's answer, please accept it officially (so that it turns green). Thanks! (And welcome to MO!)
            $endgroup$
            – GH from MO
            Apr 8 at 9:30













          • 1




            $begingroup$
            Lucia, many thanks! This is exactly what I am looking for!
            $endgroup$
            – Yuri Bilu
            Apr 8 at 2:37






          • 2




            $begingroup$
            @YuriBilu: If you like Lucia's answer, please accept it officially (so that it turns green). Thanks! (And welcome to MO!)
            $endgroup$
            – GH from MO
            Apr 8 at 9:30








          1




          1




          $begingroup$
          Lucia, many thanks! This is exactly what I am looking for!
          $endgroup$
          – Yuri Bilu
          Apr 8 at 2:37




          $begingroup$
          Lucia, many thanks! This is exactly what I am looking for!
          $endgroup$
          – Yuri Bilu
          Apr 8 at 2:37




          2




          2




          $begingroup$
          @YuriBilu: If you like Lucia's answer, please accept it officially (so that it turns green). Thanks! (And welcome to MO!)
          $endgroup$
          – GH from MO
          Apr 8 at 9:30





          $begingroup$
          @YuriBilu: If you like Lucia's answer, please accept it officially (so that it turns green). Thanks! (And welcome to MO!)
          $endgroup$
          – GH from MO
          Apr 8 at 9:30


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327447%2fleast-quadratic-residue-under-grh-an-explicit-bound%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?