Why don't electron-positron collisions release infinite energy?2019 Community Moderator Election Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara 2019 Moderator Election Q&A - QuestionnaireWhat happens where an electron is annihilated by a spontaneously generated positron-electron pair?Will the absorption of high energy gamma rays end up heating the absorping material?Positron and other particlesWhat happens to K.E. in matter antimatter annihilation?Potential energy function for high energy continuum?Black body radiation at atomic levelParticle production at angle relative to beam axisChemical bond and virtual particlesMuons produced in electromagnetic particle cascadesRelease of energy during electron jumps

Older movie/show about humans on derelict alien warship which refuels by passing through a star

Putting Ant-Man on house arrest

Multiple options vs single option UI

Contradiction proof for inequality of P and NP?

Do I need to watch Ant-Man and the Wasp and Captain Marvel before watching Avengers: Endgame?

"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?

My admission is revoked after accepting the admission offer

What is /etc/mtab in Linux?

How exactly does Hawking radiation decrease the mass of black holes?

A strange hotel

How long after the last departure shall the airport stay open for an emergency return?

How would this chord from "Rocket Man" be analyzed?

How to find if a column is referenced in a computed column?

Scheduling based problem

Why must Chinese maps be obfuscated?

What *exactly* is electrical current, voltage, and resistance?

Could moose/elk survive in the Amazon forest?

My bank got bought out, am I now going to have to start filing tax returns in a different state?

What was Apollo 13's "Little Jolt" after MECO?

"My boss was furious with me and I have been fired" vs. "My boss was furious with me and I was fired"

What does a straight horizontal line above a few notes, after a changed tempo mean?

Can I criticise the more senior developers around me for not writing clean code?

Is there really no use for MD5 anymore?

Unknown code in script



Why don't electron-positron collisions release infinite energy?



2019 Community Moderator Election
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar Manara
2019 Moderator Election Q&A - QuestionnaireWhat happens where an electron is annihilated by a spontaneously generated positron-electron pair?Will the absorption of high energy gamma rays end up heating the absorping material?Positron and other particlesWhat happens to K.E. in matter antimatter annihilation?Potential energy function for high energy continuum?Black body radiation at atomic levelParticle production at angle relative to beam axisChemical bond and virtual particlesMuons produced in electromagnetic particle cascadesRelease of energy during electron jumps










45












$begingroup$


Questions of the form:




An electron and a positron collide with E MeV of energy, what is the frequency of the photons released.




quite often come up in my A Level course (for often fairly arbitrary E). But this got me thinking. There is energy stored in the separation of an electron and a positron, which, as they get closer and closer together, should all be converted into kinetic energy. As the potential is of the form $frac1r$, this implies that at arbitrarily small distances and arbitrarily high amount of energy is given off. Given that both electrons and positrons are typically regarded as point particles, in order for them to collide, they would have to be arbitrarily close together, which would imply that over the course of their collision they should have released arbitrarily high amounts of energy, in the form of kinetic energy. As this would imply photons of arbitrarily high frequency given off, I assume that I must have missed out some piece of physics somewhere, but I am uncertain where. Ideas I have had so far include:



  • Energy should be given off, anyway, by an accelerating electron, in the form of light, according to classical EM, although I don't know how this changes from classical to quantum ideas of EM - we certainly can't have all the energy given off in a continuous stream, because we need quantised photons, so does the electron itself experience quantised energy levels as it accelerates inwards (my only issue with treating the electron in such a quantised way is that, to my mind, it'd be equivalent of treating it mathematically as a hydrogen-like atom, where the probability of the electron colliding with the positron is still extremely low, and unlike electron capture, there'd be no weak force interaction to mediate this 'electron-positron atom').

  • The actual mechanism for the decay occurs at a non-zero separation distance, perhaps photons pass between the two particles to mediate the decay at non-infinitesimal distances.

  • At relativistic speeds our classical model of electrodynamics breaks down. Now, I know this to be true - considering the fact that magnetism is basically the relativistic component of electrodynamics. However, given the fact that magnetism is the only relativistic force which'd be involved, I don't see how it'd act to counteract this infinite release of energy - so is there another force which I'm forgetting?

These are just ideas I've come up with whilst thinking about the problem, and I don't know if any of them have any physical significance in this problem, so any advice is appreciated!










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Thinking from the other side: if this would release infinite energy then you would have also needed an infinite amount to create the positrons.
    $endgroup$
    – lalala
    Apr 8 at 6:48










  • $begingroup$
    Agreed - logically in order to create them, my misunderstanding would have stated that I would have needed to work against an infinitely high force to do so, thus precluding any matter/anti-matter creation in the universe...
    $endgroup$
    – DoublyNegative
    Apr 8 at 19:21















45












$begingroup$


Questions of the form:




An electron and a positron collide with E MeV of energy, what is the frequency of the photons released.




quite often come up in my A Level course (for often fairly arbitrary E). But this got me thinking. There is energy stored in the separation of an electron and a positron, which, as they get closer and closer together, should all be converted into kinetic energy. As the potential is of the form $frac1r$, this implies that at arbitrarily small distances and arbitrarily high amount of energy is given off. Given that both electrons and positrons are typically regarded as point particles, in order for them to collide, they would have to be arbitrarily close together, which would imply that over the course of their collision they should have released arbitrarily high amounts of energy, in the form of kinetic energy. As this would imply photons of arbitrarily high frequency given off, I assume that I must have missed out some piece of physics somewhere, but I am uncertain where. Ideas I have had so far include:



  • Energy should be given off, anyway, by an accelerating electron, in the form of light, according to classical EM, although I don't know how this changes from classical to quantum ideas of EM - we certainly can't have all the energy given off in a continuous stream, because we need quantised photons, so does the electron itself experience quantised energy levels as it accelerates inwards (my only issue with treating the electron in such a quantised way is that, to my mind, it'd be equivalent of treating it mathematically as a hydrogen-like atom, where the probability of the electron colliding with the positron is still extremely low, and unlike electron capture, there'd be no weak force interaction to mediate this 'electron-positron atom').

  • The actual mechanism for the decay occurs at a non-zero separation distance, perhaps photons pass between the two particles to mediate the decay at non-infinitesimal distances.

  • At relativistic speeds our classical model of electrodynamics breaks down. Now, I know this to be true - considering the fact that magnetism is basically the relativistic component of electrodynamics. However, given the fact that magnetism is the only relativistic force which'd be involved, I don't see how it'd act to counteract this infinite release of energy - so is there another force which I'm forgetting?

These are just ideas I've come up with whilst thinking about the problem, and I don't know if any of them have any physical significance in this problem, so any advice is appreciated!










share|cite|improve this question









$endgroup$







  • 2




    $begingroup$
    Thinking from the other side: if this would release infinite energy then you would have also needed an infinite amount to create the positrons.
    $endgroup$
    – lalala
    Apr 8 at 6:48










  • $begingroup$
    Agreed - logically in order to create them, my misunderstanding would have stated that I would have needed to work against an infinitely high force to do so, thus precluding any matter/anti-matter creation in the universe...
    $endgroup$
    – DoublyNegative
    Apr 8 at 19:21













45












45








45


9



$begingroup$


Questions of the form:




An electron and a positron collide with E MeV of energy, what is the frequency of the photons released.




quite often come up in my A Level course (for often fairly arbitrary E). But this got me thinking. There is energy stored in the separation of an electron and a positron, which, as they get closer and closer together, should all be converted into kinetic energy. As the potential is of the form $frac1r$, this implies that at arbitrarily small distances and arbitrarily high amount of energy is given off. Given that both electrons and positrons are typically regarded as point particles, in order for them to collide, they would have to be arbitrarily close together, which would imply that over the course of their collision they should have released arbitrarily high amounts of energy, in the form of kinetic energy. As this would imply photons of arbitrarily high frequency given off, I assume that I must have missed out some piece of physics somewhere, but I am uncertain where. Ideas I have had so far include:



  • Energy should be given off, anyway, by an accelerating electron, in the form of light, according to classical EM, although I don't know how this changes from classical to quantum ideas of EM - we certainly can't have all the energy given off in a continuous stream, because we need quantised photons, so does the electron itself experience quantised energy levels as it accelerates inwards (my only issue with treating the electron in such a quantised way is that, to my mind, it'd be equivalent of treating it mathematically as a hydrogen-like atom, where the probability of the electron colliding with the positron is still extremely low, and unlike electron capture, there'd be no weak force interaction to mediate this 'electron-positron atom').

  • The actual mechanism for the decay occurs at a non-zero separation distance, perhaps photons pass between the two particles to mediate the decay at non-infinitesimal distances.

  • At relativistic speeds our classical model of electrodynamics breaks down. Now, I know this to be true - considering the fact that magnetism is basically the relativistic component of electrodynamics. However, given the fact that magnetism is the only relativistic force which'd be involved, I don't see how it'd act to counteract this infinite release of energy - so is there another force which I'm forgetting?

These are just ideas I've come up with whilst thinking about the problem, and I don't know if any of them have any physical significance in this problem, so any advice is appreciated!










share|cite|improve this question









$endgroup$




Questions of the form:




An electron and a positron collide with E MeV of energy, what is the frequency of the photons released.




quite often come up in my A Level course (for often fairly arbitrary E). But this got me thinking. There is energy stored in the separation of an electron and a positron, which, as they get closer and closer together, should all be converted into kinetic energy. As the potential is of the form $frac1r$, this implies that at arbitrarily small distances and arbitrarily high amount of energy is given off. Given that both electrons and positrons are typically regarded as point particles, in order for them to collide, they would have to be arbitrarily close together, which would imply that over the course of their collision they should have released arbitrarily high amounts of energy, in the form of kinetic energy. As this would imply photons of arbitrarily high frequency given off, I assume that I must have missed out some piece of physics somewhere, but I am uncertain where. Ideas I have had so far include:



  • Energy should be given off, anyway, by an accelerating electron, in the form of light, according to classical EM, although I don't know how this changes from classical to quantum ideas of EM - we certainly can't have all the energy given off in a continuous stream, because we need quantised photons, so does the electron itself experience quantised energy levels as it accelerates inwards (my only issue with treating the electron in such a quantised way is that, to my mind, it'd be equivalent of treating it mathematically as a hydrogen-like atom, where the probability of the electron colliding with the positron is still extremely low, and unlike electron capture, there'd be no weak force interaction to mediate this 'electron-positron atom').

  • The actual mechanism for the decay occurs at a non-zero separation distance, perhaps photons pass between the two particles to mediate the decay at non-infinitesimal distances.

  • At relativistic speeds our classical model of electrodynamics breaks down. Now, I know this to be true - considering the fact that magnetism is basically the relativistic component of electrodynamics. However, given the fact that magnetism is the only relativistic force which'd be involved, I don't see how it'd act to counteract this infinite release of energy - so is there another force which I'm forgetting?

These are just ideas I've come up with whilst thinking about the problem, and I don't know if any of them have any physical significance in this problem, so any advice is appreciated!







quantum-mechanics particle-physics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 6 at 13:18









DoublyNegativeDoublyNegative

546412




546412







  • 2




    $begingroup$
    Thinking from the other side: if this would release infinite energy then you would have also needed an infinite amount to create the positrons.
    $endgroup$
    – lalala
    Apr 8 at 6:48










  • $begingroup$
    Agreed - logically in order to create them, my misunderstanding would have stated that I would have needed to work against an infinitely high force to do so, thus precluding any matter/anti-matter creation in the universe...
    $endgroup$
    – DoublyNegative
    Apr 8 at 19:21












  • 2




    $begingroup$
    Thinking from the other side: if this would release infinite energy then you would have also needed an infinite amount to create the positrons.
    $endgroup$
    – lalala
    Apr 8 at 6:48










  • $begingroup$
    Agreed - logically in order to create them, my misunderstanding would have stated that I would have needed to work against an infinitely high force to do so, thus precluding any matter/anti-matter creation in the universe...
    $endgroup$
    – DoublyNegative
    Apr 8 at 19:21







2




2




$begingroup$
Thinking from the other side: if this would release infinite energy then you would have also needed an infinite amount to create the positrons.
$endgroup$
– lalala
Apr 8 at 6:48




$begingroup$
Thinking from the other side: if this would release infinite energy then you would have also needed an infinite amount to create the positrons.
$endgroup$
– lalala
Apr 8 at 6:48












$begingroup$
Agreed - logically in order to create them, my misunderstanding would have stated that I would have needed to work against an infinitely high force to do so, thus precluding any matter/anti-matter creation in the universe...
$endgroup$
– DoublyNegative
Apr 8 at 19:21




$begingroup$
Agreed - logically in order to create them, my misunderstanding would have stated that I would have needed to work against an infinitely high force to do so, thus precluding any matter/anti-matter creation in the universe...
$endgroup$
– DoublyNegative
Apr 8 at 19:21










3 Answers
3






active

oldest

votes


















43












$begingroup$

This is a great question! It can be answered on many different levels.



You are absolutely right that if we stick to the level of classical high school physics, something doesn't make sense here. However, we can get an approximately correct picture by "pasting" together a classical and a quantum description. To do this, let's think of when the classical picture breaks down.



In relativistic quantum field theory, particles can only be localized on the scale of their Compton wavelength
$$lambda = frachbarmc.$$
This means that the classical picture of point particles must break down as we approach this separation distance. Now, the electric potential energy released at this point is
$$E = frace^2r = frace^2 m chbar$$
in cgs units. Here one of the most important constants in physics has appeared, the fine structure constant which characterizes the strength of electromagnetism,
$$alpha = frace^2hbar c approx frac1137.$$
The energy released up to this point is
$$E approx alpha m c^2$$
which is not infinite, but rather only a small fraction of the total energy.



Past this radius we should use quantum mechanics, which renders the $1/r$ potential totally unapplicable -- not only do the electrons not have definite positions, but the electromagnetic field doesn't even have a definite value. Actually thinking about the full quantum state of the system at this point is so hairy that not even graduate-level textbooks do it; they usually black-box the process and only think about the final results, just like your high school course is doing. Using the full theory of quantum electrodynamics, one can show the most probable final outcome is to have two energetic photons come out. In high school you just assume this happens and use conservation laws to describe the photons long after the process is over.



For separations much greater than $lambda$, the classical picture should be applicable, and we can think of part of the energy as being released as classical electromagnetic radiation, which occurs generally when charges accelerate. (At the quantum level, the number of photons released is infinite, indicating a so-called infrared divergence, but they are individually very low in energy, and their total energy is perfectly finite.) As you expected, this energy is lost before the black-boxed quantum process starts, so the answers in your school books are actually off by around $1/137$. But this is a small enough number we don't worry much about it.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So, in some way, it would appear that we end up with some form of action at a distance. Would it be worthwhile to understand this in terms of some sort of photon exchange, or simply as some interaction between the probability fields (or not go down the route of using inaccurate intuitive understanding until I learn about QED?)
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:50










  • $begingroup$
    @DoublyNegative Are you referring to the classical part of the process or the quantum part? The quantum process is definitely not a photon exchange, it's an annihilation along with the emission of two photons. Also, both the classical and quantum parts are 100% local, there is no action at a distance since everything is mediated by the field.
    $endgroup$
    – knzhou
    Apr 6 at 13:57










  • $begingroup$
    I'm referring to the quantum part of the process. What counts as a collision when we only have two interacting wavefunctions?
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:59






  • 4




    $begingroup$
    @DoublyNegative When the wavefunctions of the electron and positron overlap in space, they can decrease in magnitude, with the accompanying creation of a photon. Everything is perfectly local: if the wavefunctions don't overlap, they won't annihilate. Also, even if their wavefunctions collide head-on, they won't annihilate to photons all of the time -- there will also be some amplitude for them to pass right through each other.
    $endgroup$
    – knzhou
    Apr 6 at 14:03










  • $begingroup$
    Ah, ok, that makes sense, thanks!
    $endgroup$
    – DoublyNegative
    Apr 6 at 14:03


















6












$begingroup$

Positronium is what you're describing in your first idea.



Until/unless a believable model of the electron is developed, pretty much the best we can do is say that the rest mass of the electron-positron system is the only energy available to be converted to radiation in an annihilation event.



This experiment will reveal a lot more about what happens in very close encounters between electrons and positrons.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    This would imply that the idea of using the kinetic energy of the particles is fundamentally flawed, then?
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:57






  • 3




    $begingroup$
    Not exactly. The idea of rest mass is kind of messy. For example, the rest mass of a system of particles [think of them as being in a box] is the total energy of the particles: their rest masses, their kinetic energies, etc. If the box itself is massless but it can contain the particles, and if the mass of the box-plus-contents is measured, that might be called the mass of the system. The mass measured when the box is stationary would be its rest mass.
    $endgroup$
    – S. McGrew
    Apr 6 at 14:03


















0












$begingroup$

I should point out that, even on a classical level, while the kinetic energy ramps up to infinity, the potential energy drops to negative infinity. The difference remains constant, equal to twice the electron mass (assuming they started from rest infinitely far away). When they annihilate, the kinetic energy disappears, but so does the potential energy. So the photons only carry off 2mc^2.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470922%2fwhy-dont-electron-positron-collisions-release-infinite-energy%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    43












    $begingroup$

    This is a great question! It can be answered on many different levels.



    You are absolutely right that if we stick to the level of classical high school physics, something doesn't make sense here. However, we can get an approximately correct picture by "pasting" together a classical and a quantum description. To do this, let's think of when the classical picture breaks down.



    In relativistic quantum field theory, particles can only be localized on the scale of their Compton wavelength
    $$lambda = frachbarmc.$$
    This means that the classical picture of point particles must break down as we approach this separation distance. Now, the electric potential energy released at this point is
    $$E = frace^2r = frace^2 m chbar$$
    in cgs units. Here one of the most important constants in physics has appeared, the fine structure constant which characterizes the strength of electromagnetism,
    $$alpha = frace^2hbar c approx frac1137.$$
    The energy released up to this point is
    $$E approx alpha m c^2$$
    which is not infinite, but rather only a small fraction of the total energy.



    Past this radius we should use quantum mechanics, which renders the $1/r$ potential totally unapplicable -- not only do the electrons not have definite positions, but the electromagnetic field doesn't even have a definite value. Actually thinking about the full quantum state of the system at this point is so hairy that not even graduate-level textbooks do it; they usually black-box the process and only think about the final results, just like your high school course is doing. Using the full theory of quantum electrodynamics, one can show the most probable final outcome is to have two energetic photons come out. In high school you just assume this happens and use conservation laws to describe the photons long after the process is over.



    For separations much greater than $lambda$, the classical picture should be applicable, and we can think of part of the energy as being released as classical electromagnetic radiation, which occurs generally when charges accelerate. (At the quantum level, the number of photons released is infinite, indicating a so-called infrared divergence, but they are individually very low in energy, and their total energy is perfectly finite.) As you expected, this energy is lost before the black-boxed quantum process starts, so the answers in your school books are actually off by around $1/137$. But this is a small enough number we don't worry much about it.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      So, in some way, it would appear that we end up with some form of action at a distance. Would it be worthwhile to understand this in terms of some sort of photon exchange, or simply as some interaction between the probability fields (or not go down the route of using inaccurate intuitive understanding until I learn about QED?)
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:50










    • $begingroup$
      @DoublyNegative Are you referring to the classical part of the process or the quantum part? The quantum process is definitely not a photon exchange, it's an annihilation along with the emission of two photons. Also, both the classical and quantum parts are 100% local, there is no action at a distance since everything is mediated by the field.
      $endgroup$
      – knzhou
      Apr 6 at 13:57










    • $begingroup$
      I'm referring to the quantum part of the process. What counts as a collision when we only have two interacting wavefunctions?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:59






    • 4




      $begingroup$
      @DoublyNegative When the wavefunctions of the electron and positron overlap in space, they can decrease in magnitude, with the accompanying creation of a photon. Everything is perfectly local: if the wavefunctions don't overlap, they won't annihilate. Also, even if their wavefunctions collide head-on, they won't annihilate to photons all of the time -- there will also be some amplitude for them to pass right through each other.
      $endgroup$
      – knzhou
      Apr 6 at 14:03










    • $begingroup$
      Ah, ok, that makes sense, thanks!
      $endgroup$
      – DoublyNegative
      Apr 6 at 14:03















    43












    $begingroup$

    This is a great question! It can be answered on many different levels.



    You are absolutely right that if we stick to the level of classical high school physics, something doesn't make sense here. However, we can get an approximately correct picture by "pasting" together a classical and a quantum description. To do this, let's think of when the classical picture breaks down.



    In relativistic quantum field theory, particles can only be localized on the scale of their Compton wavelength
    $$lambda = frachbarmc.$$
    This means that the classical picture of point particles must break down as we approach this separation distance. Now, the electric potential energy released at this point is
    $$E = frace^2r = frace^2 m chbar$$
    in cgs units. Here one of the most important constants in physics has appeared, the fine structure constant which characterizes the strength of electromagnetism,
    $$alpha = frace^2hbar c approx frac1137.$$
    The energy released up to this point is
    $$E approx alpha m c^2$$
    which is not infinite, but rather only a small fraction of the total energy.



    Past this radius we should use quantum mechanics, which renders the $1/r$ potential totally unapplicable -- not only do the electrons not have definite positions, but the electromagnetic field doesn't even have a definite value. Actually thinking about the full quantum state of the system at this point is so hairy that not even graduate-level textbooks do it; they usually black-box the process and only think about the final results, just like your high school course is doing. Using the full theory of quantum electrodynamics, one can show the most probable final outcome is to have two energetic photons come out. In high school you just assume this happens and use conservation laws to describe the photons long after the process is over.



    For separations much greater than $lambda$, the classical picture should be applicable, and we can think of part of the energy as being released as classical electromagnetic radiation, which occurs generally when charges accelerate. (At the quantum level, the number of photons released is infinite, indicating a so-called infrared divergence, but they are individually very low in energy, and their total energy is perfectly finite.) As you expected, this energy is lost before the black-boxed quantum process starts, so the answers in your school books are actually off by around $1/137$. But this is a small enough number we don't worry much about it.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      So, in some way, it would appear that we end up with some form of action at a distance. Would it be worthwhile to understand this in terms of some sort of photon exchange, or simply as some interaction between the probability fields (or not go down the route of using inaccurate intuitive understanding until I learn about QED?)
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:50










    • $begingroup$
      @DoublyNegative Are you referring to the classical part of the process or the quantum part? The quantum process is definitely not a photon exchange, it's an annihilation along with the emission of two photons. Also, both the classical and quantum parts are 100% local, there is no action at a distance since everything is mediated by the field.
      $endgroup$
      – knzhou
      Apr 6 at 13:57










    • $begingroup$
      I'm referring to the quantum part of the process. What counts as a collision when we only have two interacting wavefunctions?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:59






    • 4




      $begingroup$
      @DoublyNegative When the wavefunctions of the electron and positron overlap in space, they can decrease in magnitude, with the accompanying creation of a photon. Everything is perfectly local: if the wavefunctions don't overlap, they won't annihilate. Also, even if their wavefunctions collide head-on, they won't annihilate to photons all of the time -- there will also be some amplitude for them to pass right through each other.
      $endgroup$
      – knzhou
      Apr 6 at 14:03










    • $begingroup$
      Ah, ok, that makes sense, thanks!
      $endgroup$
      – DoublyNegative
      Apr 6 at 14:03













    43












    43








    43





    $begingroup$

    This is a great question! It can be answered on many different levels.



    You are absolutely right that if we stick to the level of classical high school physics, something doesn't make sense here. However, we can get an approximately correct picture by "pasting" together a classical and a quantum description. To do this, let's think of when the classical picture breaks down.



    In relativistic quantum field theory, particles can only be localized on the scale of their Compton wavelength
    $$lambda = frachbarmc.$$
    This means that the classical picture of point particles must break down as we approach this separation distance. Now, the electric potential energy released at this point is
    $$E = frace^2r = frace^2 m chbar$$
    in cgs units. Here one of the most important constants in physics has appeared, the fine structure constant which characterizes the strength of electromagnetism,
    $$alpha = frace^2hbar c approx frac1137.$$
    The energy released up to this point is
    $$E approx alpha m c^2$$
    which is not infinite, but rather only a small fraction of the total energy.



    Past this radius we should use quantum mechanics, which renders the $1/r$ potential totally unapplicable -- not only do the electrons not have definite positions, but the electromagnetic field doesn't even have a definite value. Actually thinking about the full quantum state of the system at this point is so hairy that not even graduate-level textbooks do it; they usually black-box the process and only think about the final results, just like your high school course is doing. Using the full theory of quantum electrodynamics, one can show the most probable final outcome is to have two energetic photons come out. In high school you just assume this happens and use conservation laws to describe the photons long after the process is over.



    For separations much greater than $lambda$, the classical picture should be applicable, and we can think of part of the energy as being released as classical electromagnetic radiation, which occurs generally when charges accelerate. (At the quantum level, the number of photons released is infinite, indicating a so-called infrared divergence, but they are individually very low in energy, and their total energy is perfectly finite.) As you expected, this energy is lost before the black-boxed quantum process starts, so the answers in your school books are actually off by around $1/137$. But this is a small enough number we don't worry much about it.






    share|cite|improve this answer









    $endgroup$



    This is a great question! It can be answered on many different levels.



    You are absolutely right that if we stick to the level of classical high school physics, something doesn't make sense here. However, we can get an approximately correct picture by "pasting" together a classical and a quantum description. To do this, let's think of when the classical picture breaks down.



    In relativistic quantum field theory, particles can only be localized on the scale of their Compton wavelength
    $$lambda = frachbarmc.$$
    This means that the classical picture of point particles must break down as we approach this separation distance. Now, the electric potential energy released at this point is
    $$E = frace^2r = frace^2 m chbar$$
    in cgs units. Here one of the most important constants in physics has appeared, the fine structure constant which characterizes the strength of electromagnetism,
    $$alpha = frace^2hbar c approx frac1137.$$
    The energy released up to this point is
    $$E approx alpha m c^2$$
    which is not infinite, but rather only a small fraction of the total energy.



    Past this radius we should use quantum mechanics, which renders the $1/r$ potential totally unapplicable -- not only do the electrons not have definite positions, but the electromagnetic field doesn't even have a definite value. Actually thinking about the full quantum state of the system at this point is so hairy that not even graduate-level textbooks do it; they usually black-box the process and only think about the final results, just like your high school course is doing. Using the full theory of quantum electrodynamics, one can show the most probable final outcome is to have two energetic photons come out. In high school you just assume this happens and use conservation laws to describe the photons long after the process is over.



    For separations much greater than $lambda$, the classical picture should be applicable, and we can think of part of the energy as being released as classical electromagnetic radiation, which occurs generally when charges accelerate. (At the quantum level, the number of photons released is infinite, indicating a so-called infrared divergence, but they are individually very low in energy, and their total energy is perfectly finite.) As you expected, this energy is lost before the black-boxed quantum process starts, so the answers in your school books are actually off by around $1/137$. But this is a small enough number we don't worry much about it.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Apr 6 at 13:40









    knzhouknzhou

    47.4k11128229




    47.4k11128229











    • $begingroup$
      So, in some way, it would appear that we end up with some form of action at a distance. Would it be worthwhile to understand this in terms of some sort of photon exchange, or simply as some interaction between the probability fields (or not go down the route of using inaccurate intuitive understanding until I learn about QED?)
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:50










    • $begingroup$
      @DoublyNegative Are you referring to the classical part of the process or the quantum part? The quantum process is definitely not a photon exchange, it's an annihilation along with the emission of two photons. Also, both the classical and quantum parts are 100% local, there is no action at a distance since everything is mediated by the field.
      $endgroup$
      – knzhou
      Apr 6 at 13:57










    • $begingroup$
      I'm referring to the quantum part of the process. What counts as a collision when we only have two interacting wavefunctions?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:59






    • 4




      $begingroup$
      @DoublyNegative When the wavefunctions of the electron and positron overlap in space, they can decrease in magnitude, with the accompanying creation of a photon. Everything is perfectly local: if the wavefunctions don't overlap, they won't annihilate. Also, even if their wavefunctions collide head-on, they won't annihilate to photons all of the time -- there will also be some amplitude for them to pass right through each other.
      $endgroup$
      – knzhou
      Apr 6 at 14:03










    • $begingroup$
      Ah, ok, that makes sense, thanks!
      $endgroup$
      – DoublyNegative
      Apr 6 at 14:03
















    • $begingroup$
      So, in some way, it would appear that we end up with some form of action at a distance. Would it be worthwhile to understand this in terms of some sort of photon exchange, or simply as some interaction between the probability fields (or not go down the route of using inaccurate intuitive understanding until I learn about QED?)
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:50










    • $begingroup$
      @DoublyNegative Are you referring to the classical part of the process or the quantum part? The quantum process is definitely not a photon exchange, it's an annihilation along with the emission of two photons. Also, both the classical and quantum parts are 100% local, there is no action at a distance since everything is mediated by the field.
      $endgroup$
      – knzhou
      Apr 6 at 13:57










    • $begingroup$
      I'm referring to the quantum part of the process. What counts as a collision when we only have two interacting wavefunctions?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:59






    • 4




      $begingroup$
      @DoublyNegative When the wavefunctions of the electron and positron overlap in space, they can decrease in magnitude, with the accompanying creation of a photon. Everything is perfectly local: if the wavefunctions don't overlap, they won't annihilate. Also, even if their wavefunctions collide head-on, they won't annihilate to photons all of the time -- there will also be some amplitude for them to pass right through each other.
      $endgroup$
      – knzhou
      Apr 6 at 14:03










    • $begingroup$
      Ah, ok, that makes sense, thanks!
      $endgroup$
      – DoublyNegative
      Apr 6 at 14:03















    $begingroup$
    So, in some way, it would appear that we end up with some form of action at a distance. Would it be worthwhile to understand this in terms of some sort of photon exchange, or simply as some interaction between the probability fields (or not go down the route of using inaccurate intuitive understanding until I learn about QED?)
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:50




    $begingroup$
    So, in some way, it would appear that we end up with some form of action at a distance. Would it be worthwhile to understand this in terms of some sort of photon exchange, or simply as some interaction between the probability fields (or not go down the route of using inaccurate intuitive understanding until I learn about QED?)
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:50












    $begingroup$
    @DoublyNegative Are you referring to the classical part of the process or the quantum part? The quantum process is definitely not a photon exchange, it's an annihilation along with the emission of two photons. Also, both the classical and quantum parts are 100% local, there is no action at a distance since everything is mediated by the field.
    $endgroup$
    – knzhou
    Apr 6 at 13:57




    $begingroup$
    @DoublyNegative Are you referring to the classical part of the process or the quantum part? The quantum process is definitely not a photon exchange, it's an annihilation along with the emission of two photons. Also, both the classical and quantum parts are 100% local, there is no action at a distance since everything is mediated by the field.
    $endgroup$
    – knzhou
    Apr 6 at 13:57












    $begingroup$
    I'm referring to the quantum part of the process. What counts as a collision when we only have two interacting wavefunctions?
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:59




    $begingroup$
    I'm referring to the quantum part of the process. What counts as a collision when we only have two interacting wavefunctions?
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:59




    4




    4




    $begingroup$
    @DoublyNegative When the wavefunctions of the electron and positron overlap in space, they can decrease in magnitude, with the accompanying creation of a photon. Everything is perfectly local: if the wavefunctions don't overlap, they won't annihilate. Also, even if their wavefunctions collide head-on, they won't annihilate to photons all of the time -- there will also be some amplitude for them to pass right through each other.
    $endgroup$
    – knzhou
    Apr 6 at 14:03




    $begingroup$
    @DoublyNegative When the wavefunctions of the electron and positron overlap in space, they can decrease in magnitude, with the accompanying creation of a photon. Everything is perfectly local: if the wavefunctions don't overlap, they won't annihilate. Also, even if their wavefunctions collide head-on, they won't annihilate to photons all of the time -- there will also be some amplitude for them to pass right through each other.
    $endgroup$
    – knzhou
    Apr 6 at 14:03












    $begingroup$
    Ah, ok, that makes sense, thanks!
    $endgroup$
    – DoublyNegative
    Apr 6 at 14:03




    $begingroup$
    Ah, ok, that makes sense, thanks!
    $endgroup$
    – DoublyNegative
    Apr 6 at 14:03











    6












    $begingroup$

    Positronium is what you're describing in your first idea.



    Until/unless a believable model of the electron is developed, pretty much the best we can do is say that the rest mass of the electron-positron system is the only energy available to be converted to radiation in an annihilation event.



    This experiment will reveal a lot more about what happens in very close encounters between electrons and positrons.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      This would imply that the idea of using the kinetic energy of the particles is fundamentally flawed, then?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:57






    • 3




      $begingroup$
      Not exactly. The idea of rest mass is kind of messy. For example, the rest mass of a system of particles [think of them as being in a box] is the total energy of the particles: their rest masses, their kinetic energies, etc. If the box itself is massless but it can contain the particles, and if the mass of the box-plus-contents is measured, that might be called the mass of the system. The mass measured when the box is stationary would be its rest mass.
      $endgroup$
      – S. McGrew
      Apr 6 at 14:03















    6












    $begingroup$

    Positronium is what you're describing in your first idea.



    Until/unless a believable model of the electron is developed, pretty much the best we can do is say that the rest mass of the electron-positron system is the only energy available to be converted to radiation in an annihilation event.



    This experiment will reveal a lot more about what happens in very close encounters between electrons and positrons.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      This would imply that the idea of using the kinetic energy of the particles is fundamentally flawed, then?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:57






    • 3




      $begingroup$
      Not exactly. The idea of rest mass is kind of messy. For example, the rest mass of a system of particles [think of them as being in a box] is the total energy of the particles: their rest masses, their kinetic energies, etc. If the box itself is massless but it can contain the particles, and if the mass of the box-plus-contents is measured, that might be called the mass of the system. The mass measured when the box is stationary would be its rest mass.
      $endgroup$
      – S. McGrew
      Apr 6 at 14:03













    6












    6








    6





    $begingroup$

    Positronium is what you're describing in your first idea.



    Until/unless a believable model of the electron is developed, pretty much the best we can do is say that the rest mass of the electron-positron system is the only energy available to be converted to radiation in an annihilation event.



    This experiment will reveal a lot more about what happens in very close encounters between electrons and positrons.






    share|cite|improve this answer









    $endgroup$



    Positronium is what you're describing in your first idea.



    Until/unless a believable model of the electron is developed, pretty much the best we can do is say that the rest mass of the electron-positron system is the only energy available to be converted to radiation in an annihilation event.



    This experiment will reveal a lot more about what happens in very close encounters between electrons and positrons.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Apr 6 at 13:46









    S. McGrewS. McGrew

    9,62921238




    9,62921238







    • 1




      $begingroup$
      This would imply that the idea of using the kinetic energy of the particles is fundamentally flawed, then?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:57






    • 3




      $begingroup$
      Not exactly. The idea of rest mass is kind of messy. For example, the rest mass of a system of particles [think of them as being in a box] is the total energy of the particles: their rest masses, their kinetic energies, etc. If the box itself is massless but it can contain the particles, and if the mass of the box-plus-contents is measured, that might be called the mass of the system. The mass measured when the box is stationary would be its rest mass.
      $endgroup$
      – S. McGrew
      Apr 6 at 14:03












    • 1




      $begingroup$
      This would imply that the idea of using the kinetic energy of the particles is fundamentally flawed, then?
      $endgroup$
      – DoublyNegative
      Apr 6 at 13:57






    • 3




      $begingroup$
      Not exactly. The idea of rest mass is kind of messy. For example, the rest mass of a system of particles [think of them as being in a box] is the total energy of the particles: their rest masses, their kinetic energies, etc. If the box itself is massless but it can contain the particles, and if the mass of the box-plus-contents is measured, that might be called the mass of the system. The mass measured when the box is stationary would be its rest mass.
      $endgroup$
      – S. McGrew
      Apr 6 at 14:03







    1




    1




    $begingroup$
    This would imply that the idea of using the kinetic energy of the particles is fundamentally flawed, then?
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:57




    $begingroup$
    This would imply that the idea of using the kinetic energy of the particles is fundamentally flawed, then?
    $endgroup$
    – DoublyNegative
    Apr 6 at 13:57




    3




    3




    $begingroup$
    Not exactly. The idea of rest mass is kind of messy. For example, the rest mass of a system of particles [think of them as being in a box] is the total energy of the particles: their rest masses, their kinetic energies, etc. If the box itself is massless but it can contain the particles, and if the mass of the box-plus-contents is measured, that might be called the mass of the system. The mass measured when the box is stationary would be its rest mass.
    $endgroup$
    – S. McGrew
    Apr 6 at 14:03




    $begingroup$
    Not exactly. The idea of rest mass is kind of messy. For example, the rest mass of a system of particles [think of them as being in a box] is the total energy of the particles: their rest masses, their kinetic energies, etc. If the box itself is massless but it can contain the particles, and if the mass of the box-plus-contents is measured, that might be called the mass of the system. The mass measured when the box is stationary would be its rest mass.
    $endgroup$
    – S. McGrew
    Apr 6 at 14:03











    0












    $begingroup$

    I should point out that, even on a classical level, while the kinetic energy ramps up to infinity, the potential energy drops to negative infinity. The difference remains constant, equal to twice the electron mass (assuming they started from rest infinitely far away). When they annihilate, the kinetic energy disappears, but so does the potential energy. So the photons only carry off 2mc^2.






    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      I should point out that, even on a classical level, while the kinetic energy ramps up to infinity, the potential energy drops to negative infinity. The difference remains constant, equal to twice the electron mass (assuming they started from rest infinitely far away). When they annihilate, the kinetic energy disappears, but so does the potential energy. So the photons only carry off 2mc^2.






      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        I should point out that, even on a classical level, while the kinetic energy ramps up to infinity, the potential energy drops to negative infinity. The difference remains constant, equal to twice the electron mass (assuming they started from rest infinitely far away). When they annihilate, the kinetic energy disappears, but so does the potential energy. So the photons only carry off 2mc^2.






        share|cite|improve this answer









        $endgroup$



        I should point out that, even on a classical level, while the kinetic energy ramps up to infinity, the potential energy drops to negative infinity. The difference remains constant, equal to twice the electron mass (assuming they started from rest infinitely far away). When they annihilate, the kinetic energy disappears, but so does the potential energy. So the photons only carry off 2mc^2.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Apr 17 at 4:07









        ragnarragnar

        920612




        920612



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470922%2fwhy-dont-electron-positron-collisions-release-infinite-energy%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?