Applying the Euler-Lagrange equations to Maxwell's TheoryDerivation of Maxwell's equations from field tensor lagrangianHow the boundary term in the variation of the action vanishesCoefficient matrix of quadratic LagrangianWhich transformations *aren't* symmetries of a Lagrangian?Problems while doing $dfracpartialpartial(partial_mu phi)$ and $dfracpartialpartial(partial_mu A_mu)$Problem to find field equations with Euler-Lagrange in field theoryProblem with Lagrangian densityEuler-Lagrange for simple scalar field (Peskin & Shroeder)Derivatives in Euler-Lagrange for fieldsDeriving Euler-Lagrange for Electrodynamics LagrangianBox form of the kinetic term and Euler-Lagrange equation
The Digit Triangles
Quoting Keynes in a lecture
awk assign to multiple variables at once
Review your own paper in Mathematics
What is the English pronunciation of "pain au chocolat"?
A Trivial Diagnosis
Make a Bowl of Alphabet Soup
Creating two special characters
Pre-mixing cryogenic fuels and using only one fuel tank
Non-trope happy ending?
Doesn't the system of the Supreme Court oppose justice?
What do you call a word that can be spelled forward or backward forming two different words
Why should universal income be universal?
How to get directions in deep space?
Is there a nicer/politer/more positive alternative for "negates"?
C++ copy constructor called at return
Has the laser at Magurele, Romania reached a tenth of the Sun's power?
Is there a RAID 0 Equivalent for RAM?
Find the next value of this number series
Why do ¬, ∀ and ∃ have the same precedence?
How does electrical safety system work on ISS?
Do we have to expect a queue for the shuttle from Watford Junction to Harry Potter Studio?
What features enable the Su-25 Frogfoot to operate with such a wide variety of fuels?
What fields between the rationals and the reals allow a good notion of 2D distance?
Applying the Euler-Lagrange equations to Maxwell's Theory
Derivation of Maxwell's equations from field tensor lagrangianHow the boundary term in the variation of the action vanishesCoefficient matrix of quadratic LagrangianWhich transformations *aren't* symmetries of a Lagrangian?Problems while doing $dfracpartialpartial(partial_mu phi)$ and $dfracpartialpartial(partial_mu A_mu)$Problem to find field equations with Euler-Lagrange in field theoryProblem with Lagrangian densityEuler-Lagrange for simple scalar field (Peskin & Shroeder)Derivatives in Euler-Lagrange for fieldsDeriving Euler-Lagrange for Electrodynamics LagrangianBox form of the kinetic term and Euler-Lagrange equation
$begingroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcalL = -frac12(partial_mu A_nu)(partial^mu A^nu) + frac12(partial_mu A^mu)^2
$$
and then he computes the following
$$
fracpartialmathcalLpartial(partial_mu A_nu) = -partial_mu A_nu + (partial_rho A^rho)eta^munu.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
$endgroup$
add a comment |
$begingroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcalL = -frac12(partial_mu A_nu)(partial^mu A^nu) + frac12(partial_mu A^mu)^2
$$
and then he computes the following
$$
fracpartialmathcalLpartial(partial_mu A_nu) = -partial_mu A_nu + (partial_rho A^rho)eta^munu.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
$endgroup$
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
add a comment |
$begingroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcalL = -frac12(partial_mu A_nu)(partial^mu A^nu) + frac12(partial_mu A^mu)^2
$$
and then he computes the following
$$
fracpartialmathcalLpartial(partial_mu A_nu) = -partial_mu A_nu + (partial_rho A^rho)eta^munu.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
$endgroup$
In Prof. David Tong's notes, specifically on page 10, he gives the Lagrangian of Maxwell's theory to be
$$
mathcalL = -frac12(partial_mu A_nu)(partial^mu A^nu) + frac12(partial_mu A^mu)^2
$$
and then he computes the following
$$
fracpartialmathcalLpartial(partial_mu A_nu) = -partial_mu A_nu + (partial_rho A^rho)eta^munu.
$$
I can see how the first term in the derivative is computed but am having problems with the second term. Any help is appreciated!
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
homework-and-exercises electromagnetism lagrangian-formalism classical-electrodynamics variational-calculus
edited Mar 18 at 7:26
Qmechanic♦
106k121961224
106k121961224
asked Mar 18 at 5:05
LimzyLimzy
304
304
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
add a comment |
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have $frac12 (partial_muA^mu)^2 = frac12 (partial_alpha A^alpha)(partial_betaA^beta)= frac12 (partial_alpha A_sigma) eta^sigmaalpha(partial_betaA_rho) eta^rhobeta$ so the derivative w.r.t. $partial_mu A_nu$ is
$$frac12delta_alpha^mu delta_sigma^nu eta^sigmaalpha(partial_betaA_rho) eta^rhobeta+frac12(partial_alpha A_sigma) eta^sigmaalphadelta_beta^mu delta_rho^nu eta^rhobeta= frac12 eta^munu (partial_beta A^beta)+frac12 (partial_alphaA^alpha) eta^munu = (partial_rhoA^rho)eta^munu $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467109%2fapplying-the-euler-lagrange-equations-to-maxwells-theory%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $frac12 (partial_muA^mu)^2 = frac12 (partial_alpha A^alpha)(partial_betaA^beta)= frac12 (partial_alpha A_sigma) eta^sigmaalpha(partial_betaA_rho) eta^rhobeta$ so the derivative w.r.t. $partial_mu A_nu$ is
$$frac12delta_alpha^mu delta_sigma^nu eta^sigmaalpha(partial_betaA_rho) eta^rhobeta+frac12(partial_alpha A_sigma) eta^sigmaalphadelta_beta^mu delta_rho^nu eta^rhobeta= frac12 eta^munu (partial_beta A^beta)+frac12 (partial_alphaA^alpha) eta^munu = (partial_rhoA^rho)eta^munu $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
add a comment |
$begingroup$
We have $frac12 (partial_muA^mu)^2 = frac12 (partial_alpha A^alpha)(partial_betaA^beta)= frac12 (partial_alpha A_sigma) eta^sigmaalpha(partial_betaA_rho) eta^rhobeta$ so the derivative w.r.t. $partial_mu A_nu$ is
$$frac12delta_alpha^mu delta_sigma^nu eta^sigmaalpha(partial_betaA_rho) eta^rhobeta+frac12(partial_alpha A_sigma) eta^sigmaalphadelta_beta^mu delta_rho^nu eta^rhobeta= frac12 eta^munu (partial_beta A^beta)+frac12 (partial_alphaA^alpha) eta^munu = (partial_rhoA^rho)eta^munu $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
add a comment |
$begingroup$
We have $frac12 (partial_muA^mu)^2 = frac12 (partial_alpha A^alpha)(partial_betaA^beta)= frac12 (partial_alpha A_sigma) eta^sigmaalpha(partial_betaA_rho) eta^rhobeta$ so the derivative w.r.t. $partial_mu A_nu$ is
$$frac12delta_alpha^mu delta_sigma^nu eta^sigmaalpha(partial_betaA_rho) eta^rhobeta+frac12(partial_alpha A_sigma) eta^sigmaalphadelta_beta^mu delta_rho^nu eta^rhobeta= frac12 eta^munu (partial_beta A^beta)+frac12 (partial_alphaA^alpha) eta^munu = (partial_rhoA^rho)eta^munu $$
where I've freely labeled and relabeled dummy indices.
$endgroup$
We have $frac12 (partial_muA^mu)^2 = frac12 (partial_alpha A^alpha)(partial_betaA^beta)= frac12 (partial_alpha A_sigma) eta^sigmaalpha(partial_betaA_rho) eta^rhobeta$ so the derivative w.r.t. $partial_mu A_nu$ is
$$frac12delta_alpha^mu delta_sigma^nu eta^sigmaalpha(partial_betaA_rho) eta^rhobeta+frac12(partial_alpha A_sigma) eta^sigmaalphadelta_beta^mu delta_rho^nu eta^rhobeta= frac12 eta^munu (partial_beta A^beta)+frac12 (partial_alphaA^alpha) eta^munu = (partial_rhoA^rho)eta^munu $$
where I've freely labeled and relabeled dummy indices.
answered Mar 18 at 5:13
DwaggDwagg
619113
619113
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f467109%2fapplying-the-euler-lagrange-equations-to-maxwells-theory%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Possible duplicates: physics.stackexchange.com/q/3005/2451 and links therein.
$endgroup$
– Qmechanic♦
Mar 18 at 11:09