correcting conditional and marginal distribution in transfer learningWhere to find pre-trained models for transfer learningMultimodal distribution and GANsTransfer learning: Poor performance with last layer replaceda simple way to test wether a tree-based classifier would transfer well to a target population?Is there any proven disadvantage of transfer learning for CNNs?Transfer learning by concatenating the last classification layerResource and useful tips on Transfer Learning in NLPParameter of Conditional Gaussian DistributionTransfer learning - small databaseHow to properly resize input images for transfer learning

Are cause and effect the same as in our Universe in a non-relativistic, Newtonian Universe in which the speed of light is infinite?

How can ping know if my host is down

Has the laser at Magurele, Romania reached a tenth of the Sun's power?

Why can't the Brexit deadlock in the UK parliament be solved with a plurality vote?

Does "he squandered his car on drink" sound natural?

Does Doodling or Improvising on the Piano Have Any Benefits?

How to convince somebody that he is fit for something else, but not this job?

What is going on with gets(stdin) on the site coderbyte?

How would you translate "more" for use as an interface button?

Microchip documentation does not label CAN buss pins on micro controller pinout diagram

Is this toilet slogan correct usage of the English language?

Pre-mixing cryogenic fuels and using only one fuel tank

Which Article Helped Get Rid of Technobabble in RPGs?

How does electrical safety system work on ISS?

Change the color of a single dot in `ddot` symbol

What kind of floor tile is this?

How do you make your own symbol when Detexify fails?

The IT department bottlenecks progress, how should I handle this?

Will number of steps recorded on FitBit/any fitness tracker add up distance in PokemonGo?

How to make money from a browser who sees 5 seconds into the future of any web page?

How to preserve electronics (computers, iPads and phones) for hundreds of years

How to explain what's wrong with this application of the chain rule?

Doesn't the system of the Supreme Court oppose justice?

PTIJ: Why is Haman obsessed with Bose?



correcting conditional and marginal distribution in transfer learning


Where to find pre-trained models for transfer learningMultimodal distribution and GANsTransfer learning: Poor performance with last layer replaceda simple way to test wether a tree-based classifier would transfer well to a target population?Is there any proven disadvantage of transfer learning for CNNs?Transfer learning by concatenating the last classification layerResource and useful tips on Transfer Learning in NLPParameter of Conditional Gaussian DistributionTransfer learning - small databaseHow to properly resize input images for transfer learning













0












$begingroup$


I understand that in case of transfer learning, we can have the target and the source data having different domain distributions. In such cases, authors in many papers suggest bringing the marginal and conditional distributions of the target and the source closer, i.e, minimize the difference between the marginal and conditional distributions. Can someone please help me understand this by giving an intuitive explanation for this? I am unable to understand what exactly the author means when he says by bringing the distributions closer? Explanations using visual representations would be helpful.










share|improve this question











$endgroup$




bumped to the homepage by Community 21 mins ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    0












    $begingroup$


    I understand that in case of transfer learning, we can have the target and the source data having different domain distributions. In such cases, authors in many papers suggest bringing the marginal and conditional distributions of the target and the source closer, i.e, minimize the difference between the marginal and conditional distributions. Can someone please help me understand this by giving an intuitive explanation for this? I am unable to understand what exactly the author means when he says by bringing the distributions closer? Explanations using visual representations would be helpful.










    share|improve this question











    $endgroup$




    bumped to the homepage by Community 21 mins ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      0












      0








      0





      $begingroup$


      I understand that in case of transfer learning, we can have the target and the source data having different domain distributions. In such cases, authors in many papers suggest bringing the marginal and conditional distributions of the target and the source closer, i.e, minimize the difference between the marginal and conditional distributions. Can someone please help me understand this by giving an intuitive explanation for this? I am unable to understand what exactly the author means when he says by bringing the distributions closer? Explanations using visual representations would be helpful.










      share|improve this question











      $endgroup$




      I understand that in case of transfer learning, we can have the target and the source data having different domain distributions. In such cases, authors in many papers suggest bringing the marginal and conditional distributions of the target and the source closer, i.e, minimize the difference between the marginal and conditional distributions. Can someone please help me understand this by giving an intuitive explanation for this? I am unable to understand what exactly the author means when he says by bringing the distributions closer? Explanations using visual representations would be helpful.







      machine-learning probability transfer-learning






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jul 10 '18 at 10:07







      Dexter

















      asked Jul 9 '18 at 7:23









      DexterDexter

      11




      11





      bumped to the homepage by Community 21 mins ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 21 mins ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Bringing the distributions closer means that we are trying to modify the source data usually by performing weights in the instances or in the features (or in both in hybrid algorithms) in order to make the weighted data more similar to the targer data. If we achieve that then we will be able to train a model considering also the source data, which usually has a larger size or it is well annotated in comparison with the target.






          share|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f34176%2fcorrecting-conditional-and-marginal-distribution-in-transfer-learning%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Bringing the distributions closer means that we are trying to modify the source data usually by performing weights in the instances or in the features (or in both in hybrid algorithms) in order to make the weighted data more similar to the targer data. If we achieve that then we will be able to train a model considering also the source data, which usually has a larger size or it is well annotated in comparison with the target.






            share|improve this answer









            $endgroup$

















              0












              $begingroup$

              Bringing the distributions closer means that we are trying to modify the source data usually by performing weights in the instances or in the features (or in both in hybrid algorithms) in order to make the weighted data more similar to the targer data. If we achieve that then we will be able to train a model considering also the source data, which usually has a larger size or it is well annotated in comparison with the target.






              share|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                Bringing the distributions closer means that we are trying to modify the source data usually by performing weights in the instances or in the features (or in both in hybrid algorithms) in order to make the weighted data more similar to the targer data. If we achieve that then we will be able to train a model considering also the source data, which usually has a larger size or it is well annotated in comparison with the target.






                share|improve this answer









                $endgroup$



                Bringing the distributions closer means that we are trying to modify the source data usually by performing weights in the instances or in the features (or in both in hybrid algorithms) in order to make the weighted data more similar to the targer data. If we achieve that then we will be able to train a model considering also the source data, which usually has a larger size or it is well annotated in comparison with the target.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Feb 19 at 23:05









                Christos KaratsalosChristos Karatsalos

                51218




                51218



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f34176%2fcorrecting-conditional-and-marginal-distribution-in-transfer-learning%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                    Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                    Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?