Calculating Wattage for Resistor in High Frequency Application? The Next CEO of Stack OverflowVoltage rating vs. power rating of a resistorTLC5940NT + 12v 5050 led stripHow to properly wind a high frequency / high voltage transformer?Improve Rise Time on 1Hz SignalDetermining the surge duration of a double exponential transient?Zero Crossing Detection of ~ 400 kHz Signal with MCUFast (high) frequency hopping with off-the-shelf componentspower supply remote sense protection resistor value?calculating maximum sense speed of amplified phototransistor circuitMay I use a smaller wattage resistor as mosfet's gate driver for a very short time?

Are police here, aren't itthey?

Math-accent symbol over parentheses enclosing accented symbol (amsmath)

Reference request: Grassmannian and Plucker coordinates in type B, C, D

How to scale a tikZ image which is within a figure environment

Recycling old answers

Does increasing your ability score affect your main stat?

How to avoid supervisors with prejudiced views?

Chain wire methods together in Lightning Web Components

What was the first Unix version to run on a microcomputer?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

What does "Its cash flow is deeply negative" mean?

If the updated MCAS software needs two AOA sensors, doesn't that introduce a new single point of failure?

Need help understanding a power circuit (caps and diodes)

What is the value of α and β in a triangle?

Why do airplanes bank sharply to the right after air-to-air refueling?

Why is quantifier elimination desirable for a given theory?

Do I need to write [sic] when a number is less than 10 but isn't written out?

A Man With a Stainless Steel Endoskeleton (like The Terminator) Fighting Cloaked Aliens Only He Can See

I want to make a picture in physics with TikZ. Can you help me?

Does falling count as part of my movement?

Plot of histogram similar to output from @risk

Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

Can a Bladesinger Wizard use Bladesong with a Hand Crossbow?



Calculating Wattage for Resistor in High Frequency Application?



The Next CEO of Stack OverflowVoltage rating vs. power rating of a resistorTLC5940NT + 12v 5050 led stripHow to properly wind a high frequency / high voltage transformer?Improve Rise Time on 1Hz SignalDetermining the surge duration of a double exponential transient?Zero Crossing Detection of ~ 400 kHz Signal with MCUFast (high) frequency hopping with off-the-shelf componentspower supply remote sense protection resistor value?calculating maximum sense speed of amplified phototransistor circuitMay I use a smaller wattage resistor as mosfet's gate driver for a very short time?










4












$begingroup$


I am making a MOSFET driving circuit.

Frequency : 400 kHz [50% duty cycle]

Gate voltage: 12 V

Total gate charge : 210 nC as per datasheet IRFP460

Rise time: 100 ns

[Q=I*t]

Current: 2.1 A

Gate resistor: V/I > 12/2.1 > 5.7 ohm

Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W



1 watt resistor is OK ?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
    $endgroup$
    – Elliot Alderson
    Mar 23 at 22:29










  • $begingroup$
    I think i should remove Average Power line .
    $endgroup$
    – Israr Sayed
    Mar 24 at 11:23















4












$begingroup$


I am making a MOSFET driving circuit.

Frequency : 400 kHz [50% duty cycle]

Gate voltage: 12 V

Total gate charge : 210 nC as per datasheet IRFP460

Rise time: 100 ns

[Q=I*t]

Current: 2.1 A

Gate resistor: V/I > 12/2.1 > 5.7 ohm

Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W



1 watt resistor is OK ?










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
    $endgroup$
    – Elliot Alderson
    Mar 23 at 22:29










  • $begingroup$
    I think i should remove Average Power line .
    $endgroup$
    – Israr Sayed
    Mar 24 at 11:23













4












4








4





$begingroup$


I am making a MOSFET driving circuit.

Frequency : 400 kHz [50% duty cycle]

Gate voltage: 12 V

Total gate charge : 210 nC as per datasheet IRFP460

Rise time: 100 ns

[Q=I*t]

Current: 2.1 A

Gate resistor: V/I > 12/2.1 > 5.7 ohm

Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W



1 watt resistor is OK ?










share|improve this question











$endgroup$




I am making a MOSFET driving circuit.

Frequency : 400 kHz [50% duty cycle]

Gate voltage: 12 V

Total gate charge : 210 nC as per datasheet IRFP460

Rise time: 100 ns

[Q=I*t]

Current: 2.1 A

Gate resistor: V/I > 12/2.1 > 5.7 ohm

Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W



1 watt resistor is OK ?







resistors high-frequency






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 24 at 11:23







Israr Sayed

















asked Mar 23 at 22:14









Israr SayedIsrar Sayed

376




376







  • 2




    $begingroup$
    Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
    $endgroup$
    – Elliot Alderson
    Mar 23 at 22:29










  • $begingroup$
    I think i should remove Average Power line .
    $endgroup$
    – Israr Sayed
    Mar 24 at 11:23












  • 2




    $begingroup$
    Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
    $endgroup$
    – Elliot Alderson
    Mar 23 at 22:29










  • $begingroup$
    I think i should remove Average Power line .
    $endgroup$
    – Israr Sayed
    Mar 24 at 11:23







2




2




$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
Mar 23 at 22:29




$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
Mar 23 at 22:29












$begingroup$
I think i should remove Average Power line .
$endgroup$
– Israr Sayed
Mar 24 at 11:23




$begingroup$
I think i should remove Average Power line .
$endgroup$
– Israr Sayed
Mar 24 at 11:23










2 Answers
2






active

oldest

votes


















6












$begingroup$

The figure below shows the Gate Voltage versus Total Gate Charge for the IRFP460 MOSFET:



Gate Voltage x Gate Charge



With a gate drive voltage $V_DR = 12,mathrmV$, it's possible to estimate a total gate charge of $155,mathrmnC$.



If $i_g $ represents the gate current, $Q$ the charge going into the gate and $tb$ (beginning time) and $te$ (ending time) to represent a time interval, then:



$$ Q = int_tb^tei_gdt $$



METHOD 1: (a first estimate)



Here the $i_g$ is considered constant ($Ig_(ON)$) during the charge ($tp_(ON)$) and constant ($Ig_(OFF)$) during discharge time ($tp_(OFF)$); roughly shown in the figure below:



Wave 1



So, the integral above reduces simply to (considering $tp_(ON)=100,mathrmns$ and $Q_g$ as the total gate charge):



$$ Q_g = Ig_(ON) times tp_(ON) $$
or
$$ Ig_(ON) = fracQ_gtp_(ON) = frac155,mathrmnC100,mathrmns= 1.55,mathrmA$$



The gate resistor $R_G$ must be calculated taking in account that, in “flat” part of the switching period (plot above), the gate voltage is constant at about $5.2$ V:



$$ R_G = frac12,mathrmV - 5.2,mathrmV1.55,mathrmA = 4.39 space Omega approx 4.7 space Omega$$



In order to simplify I consider here $Ig_(OFF)=-Ig_(ON)$. So, the root mean square value for $i_g$ is:



$$ I_RMS= Ig_(ON)sqrt2 times fractp_(ON)T approx 0.438,mathrmA$$



Finally, the average power for $R_G$ is:



$$ P = I_RMS^2R_G approx 0.9,mathrmW $$



METHOD 2:



Here the $i_g$ is considered as a straight line with maximum value $Ig_pk_(ON)$ and decreasing to zero at the end of time $tp_(ON)$ - as an approximation to the actual exponential decay (more realistic). Similar consideration is made for the gate discharge time:



Wave 3



An example of real measurement:



Wave 2



Retaining a $R_G = 4.7 space Omega$, the peak gate current can be calculated as:



$$ Ig_pk_(ON) = frac12,mathrmV4.7 space Omega approx 2.553,mathrmA $$



In order to simplify I consider here $Ig_pk_(OFF)=-Ig_pk_(ON)$. So, the root mean square value for $i_g$ is:



$$ I_RMS= Ig_pk_(ON)sqrtfrac23 times fractp_(ON)T approx 0.417,mathrmA$$



Finally, the average power for $R_G$ is:



$$ P = I_RMS^2R_G approx 0.817,mathrmW $$



No major differences from the value previously calculated.



THIRD METHOD



Just to mention a more precise (and more laborious) method. Here, $i_g$ is considered a true exponential decaying function (see figure above):



$$ i_g = Ig_pk_(ON)e^-fractR_GC_eff $$



where $C_eff$ is the effective gate input capacitance of MOSFET. So:



$$ i_g = fracV_DRR_Ge^-fractR_GC_eff $$



In the time interval $0$ to $t_s$, the total gate charge ("consumed") is given by:



$$ Q_g = int_0^t_s fracV_DRR_Ge^-fractR_GC_effdt $$



This integral can be solved for a parameter ($R_G$ or $t_s$), when others are known.



CONCLUSION: The average power values were below $1,mathrmW$, but a margin of safety can be applied for guarantee.






share|improve this answer











$endgroup$








  • 3




    $begingroup$
    I created an account to let you know that this answer is one of the best answers I've seen, on any site, in a long time. Just brilliant.
    $endgroup$
    – LogicalBranch
    Mar 24 at 12:01







  • 2




    $begingroup$
    This could become the canonical answer to questions of this kind. Thorough and well written. However, could you please add links or citations to the sources of the graphics?
    $endgroup$
    – Elliot Alderson
    Mar 24 at 13:20






  • 1




    $begingroup$
    So much effort for approximate solutions, have a look to the simple and exact Dave Tweed's one below.
    $endgroup$
    – carloc
    Mar 24 at 13:47






  • 1




    $begingroup$
    Estimating Total Gate Charge from Graph nice.
    $endgroup$
    – Israr Sayed
    Mar 24 at 13:58






  • 1




    $begingroup$
    @carloc: Just AFTER doing the paper/pencil work it's possible to conclude that the solutions are similar. My contributions is aligned with the standard procedures recommended by manufacturers. Also deals with the gate resistor estimation.
    $endgroup$
    – Dirceu Rodrigues Jr
    Mar 24 at 14:09


















9












$begingroup$

Dividing the peak power by the frequency is not useful.



Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of



$$25 W cdotfrac2 cdot 100 ns2.5 mu s = 2 W$$



Clearly, your 1W resistor is not going to cut it!



However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.



For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents



$$Energy = frac12cdot Charge cdot Voltage$$



$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$



This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.



To get the average power, multiply the energy per cycle by the number of cycles per second, giving



$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$



Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.






share|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f428730%2fcalculating-wattage-for-resistor-in-high-frequency-application%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    The figure below shows the Gate Voltage versus Total Gate Charge for the IRFP460 MOSFET:



    Gate Voltage x Gate Charge



    With a gate drive voltage $V_DR = 12,mathrmV$, it's possible to estimate a total gate charge of $155,mathrmnC$.



    If $i_g $ represents the gate current, $Q$ the charge going into the gate and $tb$ (beginning time) and $te$ (ending time) to represent a time interval, then:



    $$ Q = int_tb^tei_gdt $$



    METHOD 1: (a first estimate)



    Here the $i_g$ is considered constant ($Ig_(ON)$) during the charge ($tp_(ON)$) and constant ($Ig_(OFF)$) during discharge time ($tp_(OFF)$); roughly shown in the figure below:



    Wave 1



    So, the integral above reduces simply to (considering $tp_(ON)=100,mathrmns$ and $Q_g$ as the total gate charge):



    $$ Q_g = Ig_(ON) times tp_(ON) $$
    or
    $$ Ig_(ON) = fracQ_gtp_(ON) = frac155,mathrmnC100,mathrmns= 1.55,mathrmA$$



    The gate resistor $R_G$ must be calculated taking in account that, in “flat” part of the switching period (plot above), the gate voltage is constant at about $5.2$ V:



    $$ R_G = frac12,mathrmV - 5.2,mathrmV1.55,mathrmA = 4.39 space Omega approx 4.7 space Omega$$



    In order to simplify I consider here $Ig_(OFF)=-Ig_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_(ON)sqrt2 times fractp_(ON)T approx 0.438,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.9,mathrmW $$



    METHOD 2:



    Here the $i_g$ is considered as a straight line with maximum value $Ig_pk_(ON)$ and decreasing to zero at the end of time $tp_(ON)$ - as an approximation to the actual exponential decay (more realistic). Similar consideration is made for the gate discharge time:



    Wave 3



    An example of real measurement:



    Wave 2



    Retaining a $R_G = 4.7 space Omega$, the peak gate current can be calculated as:



    $$ Ig_pk_(ON) = frac12,mathrmV4.7 space Omega approx 2.553,mathrmA $$



    In order to simplify I consider here $Ig_pk_(OFF)=-Ig_pk_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_pk_(ON)sqrtfrac23 times fractp_(ON)T approx 0.417,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.817,mathrmW $$



    No major differences from the value previously calculated.



    THIRD METHOD



    Just to mention a more precise (and more laborious) method. Here, $i_g$ is considered a true exponential decaying function (see figure above):



    $$ i_g = Ig_pk_(ON)e^-fractR_GC_eff $$



    where $C_eff$ is the effective gate input capacitance of MOSFET. So:



    $$ i_g = fracV_DRR_Ge^-fractR_GC_eff $$



    In the time interval $0$ to $t_s$, the total gate charge ("consumed") is given by:



    $$ Q_g = int_0^t_s fracV_DRR_Ge^-fractR_GC_effdt $$



    This integral can be solved for a parameter ($R_G$ or $t_s$), when others are known.



    CONCLUSION: The average power values were below $1,mathrmW$, but a margin of safety can be applied for guarantee.






    share|improve this answer











    $endgroup$








    • 3




      $begingroup$
      I created an account to let you know that this answer is one of the best answers I've seen, on any site, in a long time. Just brilliant.
      $endgroup$
      – LogicalBranch
      Mar 24 at 12:01







    • 2




      $begingroup$
      This could become the canonical answer to questions of this kind. Thorough and well written. However, could you please add links or citations to the sources of the graphics?
      $endgroup$
      – Elliot Alderson
      Mar 24 at 13:20






    • 1




      $begingroup$
      So much effort for approximate solutions, have a look to the simple and exact Dave Tweed's one below.
      $endgroup$
      – carloc
      Mar 24 at 13:47






    • 1




      $begingroup$
      Estimating Total Gate Charge from Graph nice.
      $endgroup$
      – Israr Sayed
      Mar 24 at 13:58






    • 1




      $begingroup$
      @carloc: Just AFTER doing the paper/pencil work it's possible to conclude that the solutions are similar. My contributions is aligned with the standard procedures recommended by manufacturers. Also deals with the gate resistor estimation.
      $endgroup$
      – Dirceu Rodrigues Jr
      Mar 24 at 14:09















    6












    $begingroup$

    The figure below shows the Gate Voltage versus Total Gate Charge for the IRFP460 MOSFET:



    Gate Voltage x Gate Charge



    With a gate drive voltage $V_DR = 12,mathrmV$, it's possible to estimate a total gate charge of $155,mathrmnC$.



    If $i_g $ represents the gate current, $Q$ the charge going into the gate and $tb$ (beginning time) and $te$ (ending time) to represent a time interval, then:



    $$ Q = int_tb^tei_gdt $$



    METHOD 1: (a first estimate)



    Here the $i_g$ is considered constant ($Ig_(ON)$) during the charge ($tp_(ON)$) and constant ($Ig_(OFF)$) during discharge time ($tp_(OFF)$); roughly shown in the figure below:



    Wave 1



    So, the integral above reduces simply to (considering $tp_(ON)=100,mathrmns$ and $Q_g$ as the total gate charge):



    $$ Q_g = Ig_(ON) times tp_(ON) $$
    or
    $$ Ig_(ON) = fracQ_gtp_(ON) = frac155,mathrmnC100,mathrmns= 1.55,mathrmA$$



    The gate resistor $R_G$ must be calculated taking in account that, in “flat” part of the switching period (plot above), the gate voltage is constant at about $5.2$ V:



    $$ R_G = frac12,mathrmV - 5.2,mathrmV1.55,mathrmA = 4.39 space Omega approx 4.7 space Omega$$



    In order to simplify I consider here $Ig_(OFF)=-Ig_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_(ON)sqrt2 times fractp_(ON)T approx 0.438,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.9,mathrmW $$



    METHOD 2:



    Here the $i_g$ is considered as a straight line with maximum value $Ig_pk_(ON)$ and decreasing to zero at the end of time $tp_(ON)$ - as an approximation to the actual exponential decay (more realistic). Similar consideration is made for the gate discharge time:



    Wave 3



    An example of real measurement:



    Wave 2



    Retaining a $R_G = 4.7 space Omega$, the peak gate current can be calculated as:



    $$ Ig_pk_(ON) = frac12,mathrmV4.7 space Omega approx 2.553,mathrmA $$



    In order to simplify I consider here $Ig_pk_(OFF)=-Ig_pk_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_pk_(ON)sqrtfrac23 times fractp_(ON)T approx 0.417,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.817,mathrmW $$



    No major differences from the value previously calculated.



    THIRD METHOD



    Just to mention a more precise (and more laborious) method. Here, $i_g$ is considered a true exponential decaying function (see figure above):



    $$ i_g = Ig_pk_(ON)e^-fractR_GC_eff $$



    where $C_eff$ is the effective gate input capacitance of MOSFET. So:



    $$ i_g = fracV_DRR_Ge^-fractR_GC_eff $$



    In the time interval $0$ to $t_s$, the total gate charge ("consumed") is given by:



    $$ Q_g = int_0^t_s fracV_DRR_Ge^-fractR_GC_effdt $$



    This integral can be solved for a parameter ($R_G$ or $t_s$), when others are known.



    CONCLUSION: The average power values were below $1,mathrmW$, but a margin of safety can be applied for guarantee.






    share|improve this answer











    $endgroup$








    • 3




      $begingroup$
      I created an account to let you know that this answer is one of the best answers I've seen, on any site, in a long time. Just brilliant.
      $endgroup$
      – LogicalBranch
      Mar 24 at 12:01







    • 2




      $begingroup$
      This could become the canonical answer to questions of this kind. Thorough and well written. However, could you please add links or citations to the sources of the graphics?
      $endgroup$
      – Elliot Alderson
      Mar 24 at 13:20






    • 1




      $begingroup$
      So much effort for approximate solutions, have a look to the simple and exact Dave Tweed's one below.
      $endgroup$
      – carloc
      Mar 24 at 13:47






    • 1




      $begingroup$
      Estimating Total Gate Charge from Graph nice.
      $endgroup$
      – Israr Sayed
      Mar 24 at 13:58






    • 1




      $begingroup$
      @carloc: Just AFTER doing the paper/pencil work it's possible to conclude that the solutions are similar. My contributions is aligned with the standard procedures recommended by manufacturers. Also deals with the gate resistor estimation.
      $endgroup$
      – Dirceu Rodrigues Jr
      Mar 24 at 14:09













    6












    6








    6





    $begingroup$

    The figure below shows the Gate Voltage versus Total Gate Charge for the IRFP460 MOSFET:



    Gate Voltage x Gate Charge



    With a gate drive voltage $V_DR = 12,mathrmV$, it's possible to estimate a total gate charge of $155,mathrmnC$.



    If $i_g $ represents the gate current, $Q$ the charge going into the gate and $tb$ (beginning time) and $te$ (ending time) to represent a time interval, then:



    $$ Q = int_tb^tei_gdt $$



    METHOD 1: (a first estimate)



    Here the $i_g$ is considered constant ($Ig_(ON)$) during the charge ($tp_(ON)$) and constant ($Ig_(OFF)$) during discharge time ($tp_(OFF)$); roughly shown in the figure below:



    Wave 1



    So, the integral above reduces simply to (considering $tp_(ON)=100,mathrmns$ and $Q_g$ as the total gate charge):



    $$ Q_g = Ig_(ON) times tp_(ON) $$
    or
    $$ Ig_(ON) = fracQ_gtp_(ON) = frac155,mathrmnC100,mathrmns= 1.55,mathrmA$$



    The gate resistor $R_G$ must be calculated taking in account that, in “flat” part of the switching period (plot above), the gate voltage is constant at about $5.2$ V:



    $$ R_G = frac12,mathrmV - 5.2,mathrmV1.55,mathrmA = 4.39 space Omega approx 4.7 space Omega$$



    In order to simplify I consider here $Ig_(OFF)=-Ig_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_(ON)sqrt2 times fractp_(ON)T approx 0.438,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.9,mathrmW $$



    METHOD 2:



    Here the $i_g$ is considered as a straight line with maximum value $Ig_pk_(ON)$ and decreasing to zero at the end of time $tp_(ON)$ - as an approximation to the actual exponential decay (more realistic). Similar consideration is made for the gate discharge time:



    Wave 3



    An example of real measurement:



    Wave 2



    Retaining a $R_G = 4.7 space Omega$, the peak gate current can be calculated as:



    $$ Ig_pk_(ON) = frac12,mathrmV4.7 space Omega approx 2.553,mathrmA $$



    In order to simplify I consider here $Ig_pk_(OFF)=-Ig_pk_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_pk_(ON)sqrtfrac23 times fractp_(ON)T approx 0.417,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.817,mathrmW $$



    No major differences from the value previously calculated.



    THIRD METHOD



    Just to mention a more precise (and more laborious) method. Here, $i_g$ is considered a true exponential decaying function (see figure above):



    $$ i_g = Ig_pk_(ON)e^-fractR_GC_eff $$



    where $C_eff$ is the effective gate input capacitance of MOSFET. So:



    $$ i_g = fracV_DRR_Ge^-fractR_GC_eff $$



    In the time interval $0$ to $t_s$, the total gate charge ("consumed") is given by:



    $$ Q_g = int_0^t_s fracV_DRR_Ge^-fractR_GC_effdt $$



    This integral can be solved for a parameter ($R_G$ or $t_s$), when others are known.



    CONCLUSION: The average power values were below $1,mathrmW$, but a margin of safety can be applied for guarantee.






    share|improve this answer











    $endgroup$



    The figure below shows the Gate Voltage versus Total Gate Charge for the IRFP460 MOSFET:



    Gate Voltage x Gate Charge



    With a gate drive voltage $V_DR = 12,mathrmV$, it's possible to estimate a total gate charge of $155,mathrmnC$.



    If $i_g $ represents the gate current, $Q$ the charge going into the gate and $tb$ (beginning time) and $te$ (ending time) to represent a time interval, then:



    $$ Q = int_tb^tei_gdt $$



    METHOD 1: (a first estimate)



    Here the $i_g$ is considered constant ($Ig_(ON)$) during the charge ($tp_(ON)$) and constant ($Ig_(OFF)$) during discharge time ($tp_(OFF)$); roughly shown in the figure below:



    Wave 1



    So, the integral above reduces simply to (considering $tp_(ON)=100,mathrmns$ and $Q_g$ as the total gate charge):



    $$ Q_g = Ig_(ON) times tp_(ON) $$
    or
    $$ Ig_(ON) = fracQ_gtp_(ON) = frac155,mathrmnC100,mathrmns= 1.55,mathrmA$$



    The gate resistor $R_G$ must be calculated taking in account that, in “flat” part of the switching period (plot above), the gate voltage is constant at about $5.2$ V:



    $$ R_G = frac12,mathrmV - 5.2,mathrmV1.55,mathrmA = 4.39 space Omega approx 4.7 space Omega$$



    In order to simplify I consider here $Ig_(OFF)=-Ig_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_(ON)sqrt2 times fractp_(ON)T approx 0.438,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.9,mathrmW $$



    METHOD 2:



    Here the $i_g$ is considered as a straight line with maximum value $Ig_pk_(ON)$ and decreasing to zero at the end of time $tp_(ON)$ - as an approximation to the actual exponential decay (more realistic). Similar consideration is made for the gate discharge time:



    Wave 3



    An example of real measurement:



    Wave 2



    Retaining a $R_G = 4.7 space Omega$, the peak gate current can be calculated as:



    $$ Ig_pk_(ON) = frac12,mathrmV4.7 space Omega approx 2.553,mathrmA $$



    In order to simplify I consider here $Ig_pk_(OFF)=-Ig_pk_(ON)$. So, the root mean square value for $i_g$ is:



    $$ I_RMS= Ig_pk_(ON)sqrtfrac23 times fractp_(ON)T approx 0.417,mathrmA$$



    Finally, the average power for $R_G$ is:



    $$ P = I_RMS^2R_G approx 0.817,mathrmW $$



    No major differences from the value previously calculated.



    THIRD METHOD



    Just to mention a more precise (and more laborious) method. Here, $i_g$ is considered a true exponential decaying function (see figure above):



    $$ i_g = Ig_pk_(ON)e^-fractR_GC_eff $$



    where $C_eff$ is the effective gate input capacitance of MOSFET. So:



    $$ i_g = fracV_DRR_Ge^-fractR_GC_eff $$



    In the time interval $0$ to $t_s$, the total gate charge ("consumed") is given by:



    $$ Q_g = int_0^t_s fracV_DRR_Ge^-fractR_GC_effdt $$



    This integral can be solved for a parameter ($R_G$ or $t_s$), when others are known.



    CONCLUSION: The average power values were below $1,mathrmW$, but a margin of safety can be applied for guarantee.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited Mar 24 at 13:19









    Elliot Alderson

    7,86111022




    7,86111022










    answered Mar 24 at 6:53









    Dirceu Rodrigues JrDirceu Rodrigues Jr

    1,971612




    1,971612







    • 3




      $begingroup$
      I created an account to let you know that this answer is one of the best answers I've seen, on any site, in a long time. Just brilliant.
      $endgroup$
      – LogicalBranch
      Mar 24 at 12:01







    • 2




      $begingroup$
      This could become the canonical answer to questions of this kind. Thorough and well written. However, could you please add links or citations to the sources of the graphics?
      $endgroup$
      – Elliot Alderson
      Mar 24 at 13:20






    • 1




      $begingroup$
      So much effort for approximate solutions, have a look to the simple and exact Dave Tweed's one below.
      $endgroup$
      – carloc
      Mar 24 at 13:47






    • 1




      $begingroup$
      Estimating Total Gate Charge from Graph nice.
      $endgroup$
      – Israr Sayed
      Mar 24 at 13:58






    • 1




      $begingroup$
      @carloc: Just AFTER doing the paper/pencil work it's possible to conclude that the solutions are similar. My contributions is aligned with the standard procedures recommended by manufacturers. Also deals with the gate resistor estimation.
      $endgroup$
      – Dirceu Rodrigues Jr
      Mar 24 at 14:09












    • 3




      $begingroup$
      I created an account to let you know that this answer is one of the best answers I've seen, on any site, in a long time. Just brilliant.
      $endgroup$
      – LogicalBranch
      Mar 24 at 12:01







    • 2




      $begingroup$
      This could become the canonical answer to questions of this kind. Thorough and well written. However, could you please add links or citations to the sources of the graphics?
      $endgroup$
      – Elliot Alderson
      Mar 24 at 13:20






    • 1




      $begingroup$
      So much effort for approximate solutions, have a look to the simple and exact Dave Tweed's one below.
      $endgroup$
      – carloc
      Mar 24 at 13:47






    • 1




      $begingroup$
      Estimating Total Gate Charge from Graph nice.
      $endgroup$
      – Israr Sayed
      Mar 24 at 13:58






    • 1




      $begingroup$
      @carloc: Just AFTER doing the paper/pencil work it's possible to conclude that the solutions are similar. My contributions is aligned with the standard procedures recommended by manufacturers. Also deals with the gate resistor estimation.
      $endgroup$
      – Dirceu Rodrigues Jr
      Mar 24 at 14:09







    3




    3




    $begingroup$
    I created an account to let you know that this answer is one of the best answers I've seen, on any site, in a long time. Just brilliant.
    $endgroup$
    – LogicalBranch
    Mar 24 at 12:01





    $begingroup$
    I created an account to let you know that this answer is one of the best answers I've seen, on any site, in a long time. Just brilliant.
    $endgroup$
    – LogicalBranch
    Mar 24 at 12:01





    2




    2




    $begingroup$
    This could become the canonical answer to questions of this kind. Thorough and well written. However, could you please add links or citations to the sources of the graphics?
    $endgroup$
    – Elliot Alderson
    Mar 24 at 13:20




    $begingroup$
    This could become the canonical answer to questions of this kind. Thorough and well written. However, could you please add links or citations to the sources of the graphics?
    $endgroup$
    – Elliot Alderson
    Mar 24 at 13:20




    1




    1




    $begingroup$
    So much effort for approximate solutions, have a look to the simple and exact Dave Tweed's one below.
    $endgroup$
    – carloc
    Mar 24 at 13:47




    $begingroup$
    So much effort for approximate solutions, have a look to the simple and exact Dave Tweed's one below.
    $endgroup$
    – carloc
    Mar 24 at 13:47




    1




    1




    $begingroup$
    Estimating Total Gate Charge from Graph nice.
    $endgroup$
    – Israr Sayed
    Mar 24 at 13:58




    $begingroup$
    Estimating Total Gate Charge from Graph nice.
    $endgroup$
    – Israr Sayed
    Mar 24 at 13:58




    1




    1




    $begingroup$
    @carloc: Just AFTER doing the paper/pencil work it's possible to conclude that the solutions are similar. My contributions is aligned with the standard procedures recommended by manufacturers. Also deals with the gate resistor estimation.
    $endgroup$
    – Dirceu Rodrigues Jr
    Mar 24 at 14:09




    $begingroup$
    @carloc: Just AFTER doing the paper/pencil work it's possible to conclude that the solutions are similar. My contributions is aligned with the standard procedures recommended by manufacturers. Also deals with the gate resistor estimation.
    $endgroup$
    – Dirceu Rodrigues Jr
    Mar 24 at 14:09













    9












    $begingroup$

    Dividing the peak power by the frequency is not useful.



    Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of



    $$25 W cdotfrac2 cdot 100 ns2.5 mu s = 2 W$$



    Clearly, your 1W resistor is not going to cut it!



    However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.



    For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents



    $$Energy = frac12cdot Charge cdot Voltage$$



    $$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$



    This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.



    To get the average power, multiply the energy per cycle by the number of cycles per second, giving



    $$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$



    Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.






    share|improve this answer











    $endgroup$

















      9












      $begingroup$

      Dividing the peak power by the frequency is not useful.



      Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of



      $$25 W cdotfrac2 cdot 100 ns2.5 mu s = 2 W$$



      Clearly, your 1W resistor is not going to cut it!



      However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.



      For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents



      $$Energy = frac12cdot Charge cdot Voltage$$



      $$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$



      This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.



      To get the average power, multiply the energy per cycle by the number of cycles per second, giving



      $$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$



      Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.






      share|improve this answer











      $endgroup$















        9












        9








        9





        $begingroup$

        Dividing the peak power by the frequency is not useful.



        Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of



        $$25 W cdotfrac2 cdot 100 ns2.5 mu s = 2 W$$



        Clearly, your 1W resistor is not going to cut it!



        However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.



        For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents



        $$Energy = frac12cdot Charge cdot Voltage$$



        $$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$



        This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.



        To get the average power, multiply the energy per cycle by the number of cycles per second, giving



        $$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$



        Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.






        share|improve this answer











        $endgroup$



        Dividing the peak power by the frequency is not useful.



        Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of



        $$25 W cdotfrac2 cdot 100 ns2.5 mu s = 2 W$$



        Clearly, your 1W resistor is not going to cut it!



        However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.



        For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents



        $$Energy = frac12cdot Charge cdot Voltage$$



        $$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$



        This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.



        To get the average power, multiply the energy per cycle by the number of cycles per second, giving



        $$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$



        Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Mar 23 at 23:21

























        answered Mar 23 at 23:01









        Dave TweedDave Tweed

        123k9152265




        123k9152265



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f428730%2fcalculating-wattage-for-resistor-in-high-frequency-application%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?