How to rewrite equation of hyperbola $ 9 x ^ 2 -4y^2-72x=0 $ in standard form [on hold]How to write this conic equation in standard form?Rewrite a west to east parabola in standard formStandard form of hyperbolaHow so I put these in Standard form? Circle, Ellipse or Hyperbola?Conic Section IntuitionConic section General form to Standard form HyperbolaHyperbola Standard Form Denominator RelationshipHyperbola with Perpendicular AsymptotesRewrite hyperbola $Ax^2+Bxy+Dx+Ey+F=0$ into standard formrewrite expression in another form
How to interpret the phrase "t’en a fait voir à toi"?
Hostile work environment after whistle-blowing on coworker and our boss. What do I do?
How to decode Core DB Account.Signers using the stellar js-sdk
What if somebody invests in my application?
Why does this part of the Space Shuttle launch pad seem to be floating in air?
Is there a problem with hiding "forgot password" until it's needed?
What would you call a finite collection of unordered objects that are not necessarily distinct?
Can one define wavefronts for waves travelling on a stretched string?
A car is moving at 40 km/h. A fly at 100 km/h, starts from wall towards the car(20 km away)flies to car and back. How many trips can it make?
Can a malicious addon access internet history and such in chrome/firefox?
Is there any significance to the Valyrian Stone vault door of Qarth?
A social experiment. What is the worst that can happen?
Invariance of results when scaling explanatory variables in logistic regression, is there a proof?
Can a Bard use an arcane focus?
The most efficient algorithm to find all possible integer pairs which sum to a given integer
Why isn't KTEX's runway designation 10/28 instead of 9/27?
Simple image editor tool to draw a simple box/rectangle in an existing image
For airliners, what prevents wing strikes on landing in bad weather?
A known event to a history junkie
Can I rely on these GitHub repository files?
Reply ‘no position’ while the job posting is still there (‘HiWi’ position in Germany)
What does the "3am" section means in manpages?
Why are on-board computers allowed to change controls without notifying the pilots?
How to deal with loss of decision making power over a change?
How to rewrite equation of hyperbola $ 9 x ^ 2 -4y^2-72x=0 $ in standard form [on hold]
How to write this conic equation in standard form?Rewrite a west to east parabola in standard formStandard form of hyperbolaHow so I put these in Standard form? Circle, Ellipse or Hyperbola?Conic Section IntuitionConic section General form to Standard form HyperbolaHyperbola Standard Form Denominator RelationshipHyperbola with Perpendicular AsymptotesRewrite hyperbola $Ax^2+Bxy+Dx+Ey+F=0$ into standard formrewrite expression in another form
$begingroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
conic-sections
$endgroup$
put on hold as off-topic by Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn
add a comment |
$begingroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
conic-sections
$endgroup$
put on hold as off-topic by Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn
3
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 days ago
add a comment |
$begingroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
conic-sections
$endgroup$
I was wondering about this question:
$$ 9 x ^ 2 -4y^2-72x=0 $$
What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?
Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.
Thank you ahead of time!
conic-sections
conic-sections
edited 2 days ago
Maria Mazur
48.4k1260121
48.4k1260121
asked 2 days ago
JamesJames
535
535
put on hold as off-topic by Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn
put on hold as off-topic by Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn 2 days ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Cesareo, Alex Provost, Lee David Chung Lin, max_zorn
3
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 days ago
add a comment |
3
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 days ago
3
3
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 days ago
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 days ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac(x-4)^216-dfracy^236=1$$
$$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$
$endgroup$
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 days ago
$begingroup$
@James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
$endgroup$
– Key Flex
2 days ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+colorred16-16)-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$$(x-4)^2over 16-y^2over 36=1$$
$endgroup$
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 days ago
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac9144(x-4)^2-frac4144y^2=1$$
$$iff frac(x-4)^216-fracy^236=1$$
$$iff frac(x-4)^24^2-fracy^26^2=1$$
$endgroup$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac(x-4)^216-dfracy^236=1$$
$$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$
$endgroup$
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 days ago
$begingroup$
@James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
$endgroup$
– Key Flex
2 days ago
add a comment |
$begingroup$
Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac(x-4)^216-dfracy^236=1$$
$$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$
$endgroup$
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 days ago
$begingroup$
@James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
$endgroup$
– Key Flex
2 days ago
add a comment |
$begingroup$
Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac(x-4)^216-dfracy^236=1$$
$$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$
$endgroup$
Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.
$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac(x-4)^216-dfracy^236=1$$
$$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$
answered 2 days ago
Key FlexKey Flex
8,61561233
8,61561233
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 days ago
$begingroup$
@James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
$endgroup$
– Key Flex
2 days ago
add a comment |
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 days ago
$begingroup$
@James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
$endgroup$
– Key Flex
2 days ago
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 days ago
$begingroup$
Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
$endgroup$
– James
2 days ago
$begingroup$
@James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
$endgroup$
– Key Flex
2 days ago
$begingroup$
@James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
$endgroup$
– Key Flex
2 days ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+colorred16-16)-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$$(x-4)^2over 16-y^2over 36=1$$
$endgroup$
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 days ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+colorred16-16)-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$$(x-4)^2over 16-y^2over 36=1$$
$endgroup$
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 days ago
add a comment |
$begingroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+colorred16-16)-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$$(x-4)^2over 16-y^2over 36=1$$
$endgroup$
So we have $$9(x^2-8x)-4y^2=0$$
$$9(x^2-8x+colorred16-16)-4y^2=0$$
$$9(x-4)^2-144-4y^2=0$$
so $$9(x-4)^2-4y^2=144;;;;/:144$$
$$(x-4)^2over 16-y^2over 36=1$$
answered 2 days ago
Maria MazurMaria Mazur
48.4k1260121
48.4k1260121
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 days ago
add a comment |
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 days ago
1
1
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 days ago
$begingroup$
I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
$endgroup$
– James
2 days ago
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac9144(x-4)^2-frac4144y^2=1$$
$$iff frac(x-4)^216-fracy^236=1$$
$$iff frac(x-4)^24^2-fracy^26^2=1$$
$endgroup$
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac9144(x-4)^2-frac4144y^2=1$$
$$iff frac(x-4)^216-fracy^236=1$$
$$iff frac(x-4)^24^2-fracy^26^2=1$$
$endgroup$
add a comment |
$begingroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac9144(x-4)^2-frac4144y^2=1$$
$$iff frac(x-4)^216-fracy^236=1$$
$$iff frac(x-4)^24^2-fracy^26^2=1$$
$endgroup$
$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac9144(x-4)^2-frac4144y^2=1$$
$$iff frac(x-4)^216-fracy^236=1$$
$$iff frac(x-4)^24^2-fracy^26^2=1$$
answered 2 days ago
HAMIDINE SOUMAREHAMIDINE SOUMARE
1,468211
1,468211
add a comment |
add a comment |
3
$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 days ago