CNN reshape problem2019 Community Moderator ElectionUnderstanding cnnHow can this CNN for the portfolio management problem be implemented in keras?Batch data before feed into CNN networkHow filters are made in a CNN?Value error in Merging two different models in kerasValue of loss and accuracy does not change over EpochsUsing categorial_crossentropy to train a model in kerasKeras Attention Guided CNN problemGenerating image embedding using CNNPivot reshape dataframe
If human space travel is limited by the G force vulnerability, is there a way to counter G forces?
Can a virus destroy the BIOS of a modern computer?
Dealing with conflict between co-workers for non-work-related issue affecting their work
Why was the shrinking from 8″ made only to 5.25″ and not smaller (4″ or less)?
Why is this clock signal connected to a capacitor to gnd?
Is there an expression that means doing something right before you will need it rather than doing it in case you might need it?
ssTTsSTtRrriinInnnnNNNIiinngg
What is the intuition behind short exact sequences of groups; in particular, what is the intuition behind group extensions?
How do conventional missiles fly?
Neighboring nodes in the network
What is the difference between 仮定 and 想定?
Does casting Light, or a similar spell, have any effect when the caster is swallowed by a monster?
What do you call someone who asks many questions?
What exploit are these user agents trying to use?
What's the point of deactivating Num Lock on login screens?
Is it inappropriate for a student to attend their mentor's dissertation defense?
Fully-Firstable Anagram Sets
Is there a hemisphere-neutral way of specifying a season?
Why would the Red Woman birth a shadow if she worshipped the Lord of the Light?
How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?
Ambiguity in the definition of entropy
One verb to replace 'be a member of' a club
What about the virus in 12 Monkeys?
Is there a way of "bevelling" a single vertex?
CNN reshape problem
2019 Community Moderator ElectionUnderstanding cnnHow can this CNN for the portfolio management problem be implemented in keras?Batch data before feed into CNN networkHow filters are made in a CNN?Value error in Merging two different models in kerasValue of loss and accuracy does not change over EpochsUsing categorial_crossentropy to train a model in kerasKeras Attention Guided CNN problemGenerating image embedding using CNNPivot reshape dataframe
$begingroup$
I am new to CNN and i want to use it for Modulation classification
I found this code and I want to replicate it as it is exept that i only used the digital modulations and some SNR (signal-Noise Ratio) levels
import os
import theano as th
import theano.tensor as T
os.environ["KERAS_BACKEND"] = "theano"
#os.environ["KERAS_BACKEND"] = "tensorflow"
os.environ["THEANO_FLAGS"] = "device=gpu%d"%(1)
import numpy as np
import keras.models as models
from keras.layers.core import Reshape,Dense,Dropout,Activation,Flatten
from keras.layers.convolutional import Convolution2D, ZeroPadding2D, Conv2D
import pickle, keras
full_dataset = pickle.load(open("RML2016.10a.pkl",'rb'),encoding='latin1')
snrs,mods = map(lambda j: sorted(list(set(map(lambda x: x[j], full_dataset.keys())))), [1,0])
digital_mods = ['8PSK', 'BPSK', 'CPFSK', 'GFSK', 'PAM4', 'QAM16', 'QAM64', 'QPSK']
snr_levels = [-16, -12, -8, -4, 0, 4, 8, 12, 16]
X = []
lbl = []
for mod in digital_mods:
for snr in snr_levels:
X.append(full_dataset[(mod,snr)])
for i in range(full_dataset[(mod,snr)].shape[0]): lbl.append((mod,snr))
X = np.vstack(X)
np.random.seed(2016)
n_examples = X.shape[0]
n_train = int(n_examples * 0.5)
train_idx = np.random.choice(range(0,n_examples), size=n_train, replace=False)
test_idx = list(set(range(0,n_examples))-set(train_idx))
X_train = X[train_idx]
X_test = X[test_idx]
def to_onehot(yy):
yy1 = np.zeros([len(yy), max(yy)+1])
yy1[np.arange(len(yy)),yy] = 1
return yy1
Y_train = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), train_idx)))
Y_test = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), test_idx)))
in_shp = list(X_train.shape[1:])
classes = digital_mods
nb_epoch = 100 # number of epochs to train on
batch_size = 1024
dr = 0.5
model = models.Sequential()
model.add(Reshape(in_shp+[1], input_shape=in_shp))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (1,4), activation="relu"))
model.add(Dropout(dr))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (2,4), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(dr))
model.add(Dense(len(classes), activation='softmax'))
model.add(Reshape([len(classes)]))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
filepath = 'weight_4layers.wts.h5'
history = model.fit(X_train,
Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=1,
validation_data=(X_test, Y_test),
callbacks = [
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='auto'),
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
])
please note the following:
I have 8 modulation types and 9 SNR levels = 72 pairs [mod,snr]
each paire is composed of 1000 array of [2, 128] (complex values of radio signal)
X train has the shape (36000, 2, 128)
in_shape has the shape (2, 128)
So when i run my program I get the following error:
Traceback (most recent call last):
File "/home/nechi/PycharmProjects/AMC/cnn.py", line 88, in <module>
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 952, in fit
batch_size=batch_size)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 789, in _standardize_user_data
exception_prefix='target')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training_utils.py", line 138, in standardize_input_data
str(data_shape))
ValueError: Error when checking target: expected reshape_2 to have shape (8,) but got array with shape (10,)
python cnn
$endgroup$
add a comment |
$begingroup$
I am new to CNN and i want to use it for Modulation classification
I found this code and I want to replicate it as it is exept that i only used the digital modulations and some SNR (signal-Noise Ratio) levels
import os
import theano as th
import theano.tensor as T
os.environ["KERAS_BACKEND"] = "theano"
#os.environ["KERAS_BACKEND"] = "tensorflow"
os.environ["THEANO_FLAGS"] = "device=gpu%d"%(1)
import numpy as np
import keras.models as models
from keras.layers.core import Reshape,Dense,Dropout,Activation,Flatten
from keras.layers.convolutional import Convolution2D, ZeroPadding2D, Conv2D
import pickle, keras
full_dataset = pickle.load(open("RML2016.10a.pkl",'rb'),encoding='latin1')
snrs,mods = map(lambda j: sorted(list(set(map(lambda x: x[j], full_dataset.keys())))), [1,0])
digital_mods = ['8PSK', 'BPSK', 'CPFSK', 'GFSK', 'PAM4', 'QAM16', 'QAM64', 'QPSK']
snr_levels = [-16, -12, -8, -4, 0, 4, 8, 12, 16]
X = []
lbl = []
for mod in digital_mods:
for snr in snr_levels:
X.append(full_dataset[(mod,snr)])
for i in range(full_dataset[(mod,snr)].shape[0]): lbl.append((mod,snr))
X = np.vstack(X)
np.random.seed(2016)
n_examples = X.shape[0]
n_train = int(n_examples * 0.5)
train_idx = np.random.choice(range(0,n_examples), size=n_train, replace=False)
test_idx = list(set(range(0,n_examples))-set(train_idx))
X_train = X[train_idx]
X_test = X[test_idx]
def to_onehot(yy):
yy1 = np.zeros([len(yy), max(yy)+1])
yy1[np.arange(len(yy)),yy] = 1
return yy1
Y_train = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), train_idx)))
Y_test = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), test_idx)))
in_shp = list(X_train.shape[1:])
classes = digital_mods
nb_epoch = 100 # number of epochs to train on
batch_size = 1024
dr = 0.5
model = models.Sequential()
model.add(Reshape(in_shp+[1], input_shape=in_shp))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (1,4), activation="relu"))
model.add(Dropout(dr))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (2,4), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(dr))
model.add(Dense(len(classes), activation='softmax'))
model.add(Reshape([len(classes)]))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
filepath = 'weight_4layers.wts.h5'
history = model.fit(X_train,
Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=1,
validation_data=(X_test, Y_test),
callbacks = [
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='auto'),
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
])
please note the following:
I have 8 modulation types and 9 SNR levels = 72 pairs [mod,snr]
each paire is composed of 1000 array of [2, 128] (complex values of radio signal)
X train has the shape (36000, 2, 128)
in_shape has the shape (2, 128)
So when i run my program I get the following error:
Traceback (most recent call last):
File "/home/nechi/PycharmProjects/AMC/cnn.py", line 88, in <module>
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 952, in fit
batch_size=batch_size)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 789, in _standardize_user_data
exception_prefix='target')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training_utils.py", line 138, in standardize_input_data
str(data_shape))
ValueError: Error when checking target: expected reshape_2 to have shape (8,) but got array with shape (10,)
python cnn
$endgroup$
$begingroup$
did you try to convert your labels to categorical (one hot)? or you use 'sparse_categorical_crossentropy' as your loss function.
$endgroup$
– honar.cs
Mar 26 at 20:07
add a comment |
$begingroup$
I am new to CNN and i want to use it for Modulation classification
I found this code and I want to replicate it as it is exept that i only used the digital modulations and some SNR (signal-Noise Ratio) levels
import os
import theano as th
import theano.tensor as T
os.environ["KERAS_BACKEND"] = "theano"
#os.environ["KERAS_BACKEND"] = "tensorflow"
os.environ["THEANO_FLAGS"] = "device=gpu%d"%(1)
import numpy as np
import keras.models as models
from keras.layers.core import Reshape,Dense,Dropout,Activation,Flatten
from keras.layers.convolutional import Convolution2D, ZeroPadding2D, Conv2D
import pickle, keras
full_dataset = pickle.load(open("RML2016.10a.pkl",'rb'),encoding='latin1')
snrs,mods = map(lambda j: sorted(list(set(map(lambda x: x[j], full_dataset.keys())))), [1,0])
digital_mods = ['8PSK', 'BPSK', 'CPFSK', 'GFSK', 'PAM4', 'QAM16', 'QAM64', 'QPSK']
snr_levels = [-16, -12, -8, -4, 0, 4, 8, 12, 16]
X = []
lbl = []
for mod in digital_mods:
for snr in snr_levels:
X.append(full_dataset[(mod,snr)])
for i in range(full_dataset[(mod,snr)].shape[0]): lbl.append((mod,snr))
X = np.vstack(X)
np.random.seed(2016)
n_examples = X.shape[0]
n_train = int(n_examples * 0.5)
train_idx = np.random.choice(range(0,n_examples), size=n_train, replace=False)
test_idx = list(set(range(0,n_examples))-set(train_idx))
X_train = X[train_idx]
X_test = X[test_idx]
def to_onehot(yy):
yy1 = np.zeros([len(yy), max(yy)+1])
yy1[np.arange(len(yy)),yy] = 1
return yy1
Y_train = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), train_idx)))
Y_test = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), test_idx)))
in_shp = list(X_train.shape[1:])
classes = digital_mods
nb_epoch = 100 # number of epochs to train on
batch_size = 1024
dr = 0.5
model = models.Sequential()
model.add(Reshape(in_shp+[1], input_shape=in_shp))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (1,4), activation="relu"))
model.add(Dropout(dr))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (2,4), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(dr))
model.add(Dense(len(classes), activation='softmax'))
model.add(Reshape([len(classes)]))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
filepath = 'weight_4layers.wts.h5'
history = model.fit(X_train,
Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=1,
validation_data=(X_test, Y_test),
callbacks = [
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='auto'),
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
])
please note the following:
I have 8 modulation types and 9 SNR levels = 72 pairs [mod,snr]
each paire is composed of 1000 array of [2, 128] (complex values of radio signal)
X train has the shape (36000, 2, 128)
in_shape has the shape (2, 128)
So when i run my program I get the following error:
Traceback (most recent call last):
File "/home/nechi/PycharmProjects/AMC/cnn.py", line 88, in <module>
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 952, in fit
batch_size=batch_size)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 789, in _standardize_user_data
exception_prefix='target')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training_utils.py", line 138, in standardize_input_data
str(data_shape))
ValueError: Error when checking target: expected reshape_2 to have shape (8,) but got array with shape (10,)
python cnn
$endgroup$
I am new to CNN and i want to use it for Modulation classification
I found this code and I want to replicate it as it is exept that i only used the digital modulations and some SNR (signal-Noise Ratio) levels
import os
import theano as th
import theano.tensor as T
os.environ["KERAS_BACKEND"] = "theano"
#os.environ["KERAS_BACKEND"] = "tensorflow"
os.environ["THEANO_FLAGS"] = "device=gpu%d"%(1)
import numpy as np
import keras.models as models
from keras.layers.core import Reshape,Dense,Dropout,Activation,Flatten
from keras.layers.convolutional import Convolution2D, ZeroPadding2D, Conv2D
import pickle, keras
full_dataset = pickle.load(open("RML2016.10a.pkl",'rb'),encoding='latin1')
snrs,mods = map(lambda j: sorted(list(set(map(lambda x: x[j], full_dataset.keys())))), [1,0])
digital_mods = ['8PSK', 'BPSK', 'CPFSK', 'GFSK', 'PAM4', 'QAM16', 'QAM64', 'QPSK']
snr_levels = [-16, -12, -8, -4, 0, 4, 8, 12, 16]
X = []
lbl = []
for mod in digital_mods:
for snr in snr_levels:
X.append(full_dataset[(mod,snr)])
for i in range(full_dataset[(mod,snr)].shape[0]): lbl.append((mod,snr))
X = np.vstack(X)
np.random.seed(2016)
n_examples = X.shape[0]
n_train = int(n_examples * 0.5)
train_idx = np.random.choice(range(0,n_examples), size=n_train, replace=False)
test_idx = list(set(range(0,n_examples))-set(train_idx))
X_train = X[train_idx]
X_test = X[test_idx]
def to_onehot(yy):
yy1 = np.zeros([len(yy), max(yy)+1])
yy1[np.arange(len(yy)),yy] = 1
return yy1
Y_train = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), train_idx)))
Y_test = to_onehot(list(map(lambda x: mods.index(lbl[x][0]), test_idx)))
in_shp = list(X_train.shape[1:])
classes = digital_mods
nb_epoch = 100 # number of epochs to train on
batch_size = 1024
dr = 0.5
model = models.Sequential()
model.add(Reshape(in_shp+[1], input_shape=in_shp))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (1,4), activation="relu"))
model.add(Dropout(dr))
model.add(ZeroPadding2D((0,2)))
model.add(Conv2D(64, (2,4), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Conv2D(128, (1,8), activation="relu"))
model.add(Dropout(dr))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(dr))
model.add(Dense(len(classes), activation='softmax'))
model.add(Reshape([len(classes)]))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
filepath = 'weight_4layers.wts.h5'
history = model.fit(X_train,
Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=1,
validation_data=(X_test, Y_test),
callbacks = [
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, mode='auto'),
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
])
please note the following:
I have 8 modulation types and 9 SNR levels = 72 pairs [mod,snr]
each paire is composed of 1000 array of [2, 128] (complex values of radio signal)
X train has the shape (36000, 2, 128)
in_shape has the shape (2, 128)
So when i run my program I get the following error:
Traceback (most recent call last):
File "/home/nechi/PycharmProjects/AMC/cnn.py", line 88, in <module>
keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 952, in fit
batch_size=batch_size)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training.py", line 789, in _standardize_user_data
exception_prefix='target')
File "/usr/local/lib/python3.6/dist-packages/keras/engine/training_utils.py", line 138, in standardize_input_data
str(data_shape))
ValueError: Error when checking target: expected reshape_2 to have shape (8,) but got array with shape (10,)
python cnn
python cnn
asked Mar 26 at 14:59
A.SDRA.SDR
132
132
$begingroup$
did you try to convert your labels to categorical (one hot)? or you use 'sparse_categorical_crossentropy' as your loss function.
$endgroup$
– honar.cs
Mar 26 at 20:07
add a comment |
$begingroup$
did you try to convert your labels to categorical (one hot)? or you use 'sparse_categorical_crossentropy' as your loss function.
$endgroup$
– honar.cs
Mar 26 at 20:07
$begingroup$
did you try to convert your labels to categorical (one hot)? or you use 'sparse_categorical_crossentropy' as your loss function.
$endgroup$
– honar.cs
Mar 26 at 20:07
$begingroup$
did you try to convert your labels to categorical (one hot)? or you use 'sparse_categorical_crossentropy' as your loss function.
$endgroup$
– honar.cs
Mar 26 at 20:07
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "557"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48037%2fcnn-reshape-problem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48037%2fcnn-reshape-problem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
did you try to convert your labels to categorical (one hot)? or you use 'sparse_categorical_crossentropy' as your loss function.
$endgroup$
– honar.cs
Mar 26 at 20:07