Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?

Pulling the rope with one hand is as heavy as with two hands?

What term is being referred to with "reflected-sound-of-underground-spirits"?

Extension of 2-adic valuation to the real numbers

What is the term for a person whose job is to place products on shelves in stores?

Can someone publish a story that happened to you?

Elements that can bond to themselves?

Function pointer with named arguments?

'It addicted me, with one taste.' Can 'addict' be used transitively?

How could Tony Stark make this in Endgame?

What happens in the secondary winding if there's no spark plug connected?

How can I practically buy stocks?

Apparently, my CLR assembly function is causing deadlocks?

I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?

Why did some of my point & shoot film photos come back with one third light white or orange?

How come there are so many candidates for the 2020 Democratic party presidential nomination?

What is the optimal strategy for the Dictionary Game?

How exactly does Hawking radiation decrease the mass of black holes?

Pre-plastic human skin alternative

Which big number is bigger?

Random Forest different results for same observation

What is the most expensive material in the world that could be used to create Pun-Pun's lute?

If a planet has 3 moons, is it possible to have triple Full/New Moons at once?

As an international instructor, should I openly talk about my accent?

Who was the lone kid in the line of people at the lake at the end of Avengers: Endgame?



Prove that NP is closed under karp reduction?


Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?













5












$begingroup$


A complexity class $mathbbC$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$



How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    Apr 6 at 19:09










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    Apr 6 at 20:06















5












$begingroup$


A complexity class $mathbbC$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$



How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    Apr 6 at 19:09










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    Apr 6 at 20:06













5












5








5


0



$begingroup$


A complexity class $mathbbC$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$



How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$










share|cite|improve this question









$endgroup$




A complexity class $mathbbC$ is said to be closed under a reduction if:



$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$



How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.



Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$







complexity-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 6 at 19:02









Ankit BahlAnkit Bahl

965




965







  • 4




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    Apr 6 at 19:09










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    Apr 6 at 20:06












  • 4




    $begingroup$
    Try using the definitions.
    $endgroup$
    – Yuval Filmus
    Apr 6 at 19:09










  • $begingroup$
    @YuvalFilmus thanks for the advice, this helped me figure it out!
    $endgroup$
    – Ankit Bahl
    Apr 6 at 20:06







4




4




$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09




$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
Apr 6 at 19:09












$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06




$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
Apr 6 at 20:06










1 Answer
1






active

oldest

votes


















7












$begingroup$

I was able to figure it out. In case anyone (mans in ECE 406) was wondering:



$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.



$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),



Therefore, an algorithm for $A$ can be made as follows:



$A (i)$



  1. Take input $i$ and apply $m$ to yield $m(i)$

  2. Apply $b$ with input $m(i)$

This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "419"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    7












    $begingroup$

    I was able to figure it out. In case anyone (mans in ECE 406) was wondering:



    $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.



    $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),



    Therefore, an algorithm for $A$ can be made as follows:



    $A (i)$



    1. Take input $i$ and apply $m$ to yield $m(i)$

    2. Apply $b$ with input $m(i)$

    This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






    share|cite|improve this answer











    $endgroup$

















      7












      $begingroup$

      I was able to figure it out. In case anyone (mans in ECE 406) was wondering:



      $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.



      $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),



      Therefore, an algorithm for $A$ can be made as follows:



      $A (i)$



      1. Take input $i$ and apply $m$ to yield $m(i)$

      2. Apply $b$ with input $m(i)$

      This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






      share|cite|improve this answer











      $endgroup$















        7












        7








        7





        $begingroup$

        I was able to figure it out. In case anyone (mans in ECE 406) was wondering:



        $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.



        $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),



        Therefore, an algorithm for $A$ can be made as follows:



        $A (i)$



        1. Take input $i$ and apply $m$ to yield $m(i)$

        2. Apply $b$ with input $m(i)$

        This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.






        share|cite|improve this answer











        $endgroup$



        I was able to figure it out. In case anyone (mans in ECE 406) was wondering:



        $B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.



        $A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),



        Therefore, an algorithm for $A$ can be made as follows:



        $A (i)$



        1. Take input $i$ and apply $m$ to yield $m(i)$

        2. Apply $b$ with input $m(i)$

        This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 9 at 12:18

























        answered Apr 6 at 20:05









        Ankit BahlAnkit Bahl

        965




        965



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Computer Science Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Marja Vauras Lähteet | Aiheesta muualla | NavigointivalikkoMarja Vauras Turun yliopiston tutkimusportaalissaInfobox OKSuomalaisen Tiedeakatemian varsinaiset jäsenetKasvatustieteiden tiedekunnan dekaanit ja muu johtoMarja VaurasKoulutusvienti on kestävyys- ja ketteryyslaji (2.5.2017)laajentamallaWorldCat Identities0000 0001 0855 9405n86069603utb201588738523620927

            Which is better: GPT or RelGAN for text generation?2019 Community Moderator ElectionWhat is the difference between TextGAN and LM for text generation?GANs (generative adversarial networks) possible for text as well?Generator loss not decreasing- text to image synthesisChoosing a right algorithm for template-based text generationHow should I format input and output for text generation with LSTMsGumbel Softmax vs Vanilla Softmax for GAN trainingWhich neural network to choose for classification from text/speech?NLP text autoencoder that generates text in poetic meterWhat is the interpretation of the expectation notation in the GAN formulation?What is the difference between TextGAN and LM for text generation?How to prepare the data for text generation task

            Is this part of the description of the Archfey warlock's Misty Escape feature redundant?When is entropic ward considered “used”?How does the reaction timing work for Wrath of the Storm? Can it potentially prevent the damage from the triggering attack?Does the Dark Arts Archlich warlock patrons's Arcane Invisibility activate every time you cast a level 1+ spell?When attacking while invisible, when exactly does invisibility break?Can I cast Hellish Rebuke on my turn?Do I have to “pre-cast” a reaction spell in order for it to be triggered?What happens if a Player Misty Escapes into an Invisible CreatureCan a reaction interrupt multiattack?Does the Fiend-patron warlock's Hurl Through Hell feature dispel effects that require the target to be on the same plane as the caster?What are you allowed to do while using the Warlock's Eldritch Master feature?