Minkowski spaceMinkowski MetricMinkowski Metric SignatureMinkowski metric — why does it follow from the constancy of the speed of light?Minkowski spacetime: Is there a signature (+,+,+,+)?Minkowski spacetime vs Euclidian spaceMinkowski metric: Why does it look like it does?Minkowski spacetime with a twist?Understanding space-like hyperplanes in Minkowski spaceCan an a distance in Minkowski space, based on a Euclidean plane, be time-like?Affine space for Minkowski space time
Elements that can bond to themselves?
Why must Chinese maps be obfuscated?
Pre-plastic human skin alternative
Can I criticise the more senior developers around me for not writing clean code?
Re-entry to Germany after vacation using blue card
If a planet has 3 moons, is it possible to have triple Full/New Moons at once?
Mistake in years of experience in resume?
How do I produce this Greek letter koppa: Ϟ in pdfLaTeX?
What to do with someone that cheated their way through university and a PhD program?
Does a large simulator bay have standard public address announcements?
On The Origin of Dissonant Chords
Rivers without rain
Covering null sets by a finite number of intervals
A strange hotel
How much cash can I safely carry into the USA and avoid civil forfeiture?
"The cow" OR "a cow" OR "cows" in this context
What term is being referred to with "reflected-sound-of-underground-spirits"?
Farming on the moon
How come there are so many candidates for the 2020 Democratic party presidential nomination?
How to pronounce 'c++' in Spanish
How did Captain America use this in Avengers: Endgame?
Can't get 5V 3A DC constant
What causes platform events to fail to be published and should I cater for failed platform event creations?
Equally distributed table columns
Minkowski space
Minkowski MetricMinkowski Metric SignatureMinkowski metric — why does it follow from the constancy of the speed of light?Minkowski spacetime: Is there a signature (+,+,+,+)?Minkowski spacetime vs Euclidian spaceMinkowski metric: Why does it look like it does?Minkowski spacetime with a twist?Understanding space-like hyperplanes in Minkowski spaceCan an a distance in Minkowski space, based on a Euclidean plane, be time-like?Affine space for Minkowski space time
$begingroup$
In Minkowski space, coordinates which satisfy
$x^2 = t^2 - X^2 > 0$
are in the region of spacetime that is time-like.
If it's
$x^2 = t^2 - X^2 < 0$
the region is space-like.
But if
$x^2 = t^2 - X^2 > 0$
then its "trajectory of light-like particles".
I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".
My confusion is - why just light-like particles? There are many other particles at quantum level.
special-relativity mass metric-tensor causality
$endgroup$
add a comment |
$begingroup$
In Minkowski space, coordinates which satisfy
$x^2 = t^2 - X^2 > 0$
are in the region of spacetime that is time-like.
If it's
$x^2 = t^2 - X^2 < 0$
the region is space-like.
But if
$x^2 = t^2 - X^2 > 0$
then its "trajectory of light-like particles".
I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".
My confusion is - why just light-like particles? There are many other particles at quantum level.
special-relativity mass metric-tensor causality
$endgroup$
$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38
add a comment |
$begingroup$
In Minkowski space, coordinates which satisfy
$x^2 = t^2 - X^2 > 0$
are in the region of spacetime that is time-like.
If it's
$x^2 = t^2 - X^2 < 0$
the region is space-like.
But if
$x^2 = t^2 - X^2 > 0$
then its "trajectory of light-like particles".
I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".
My confusion is - why just light-like particles? There are many other particles at quantum level.
special-relativity mass metric-tensor causality
$endgroup$
In Minkowski space, coordinates which satisfy
$x^2 = t^2 - X^2 > 0$
are in the region of spacetime that is time-like.
If it's
$x^2 = t^2 - X^2 < 0$
the region is space-like.
But if
$x^2 = t^2 - X^2 > 0$
then its "trajectory of light-like particles".
I have understood the first two points about time- and space-like regions but I could not get the third one about "light-like particles".
My confusion is - why just light-like particles? There are many other particles at quantum level.
special-relativity mass metric-tensor causality
special-relativity mass metric-tensor causality
edited Apr 7 at 10:02
Gallifreyan
1056
1056
asked Apr 6 at 20:07
sk9298sk9298
846
846
$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38
add a comment |
$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38
$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38
$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.
The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.
$endgroup$
add a comment |
$begingroup$
My confusion is about why just light like particles? there are many other particles at quantum level.
You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.
An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470979%2fminkowski-space%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.
The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.
$endgroup$
add a comment |
$begingroup$
Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.
The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.
$endgroup$
add a comment |
$begingroup$
Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.
The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.
$endgroup$
Only particles with zero mass can travel between two events which are separated by a light-like distance. The trajectory is called light-like because photons (light) are massless, and historically the first example of a massless particle, as well as the only example in the 1910's. There are other massless particles, like gluons which would also be able to travel between two events separated by a light-like distance.
The reason why only massless particles are able to travel between two events separated by a light-like distance is that it requires you to travel at exactly the speed of light. You can see this by considering the equation $t^2-x^2=0$, this means that $x=pm t$. These equations are with the units such that the speed of light $c=1$. Thus the particle taking this trajectory is travelling at the speed of light.
answered Apr 6 at 20:13
LucashWindowWasherLucashWindowWasher
38813
38813
add a comment |
add a comment |
$begingroup$
My confusion is about why just light like particles? there are many other particles at quantum level.
You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.
An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.
$endgroup$
add a comment |
$begingroup$
My confusion is about why just light like particles? there are many other particles at quantum level.
You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.
An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.
$endgroup$
add a comment |
$begingroup$
My confusion is about why just light like particles? there are many other particles at quantum level.
You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.
An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.
$endgroup$
My confusion is about why just light like particles? there are many other particles at quantum level.
You are correct. The terminology is historical in nature. Light was the first massless particle to be discovered. The terminology “lightlike” was established before any other massless particles were discovered. Once other massless particles were discovered it was shown that they also travel along lightlike geodesics, but by then the term “lightlike” was well established.
An alternative term with the same meaning as “lightlike” is “null”. If you prefer then you can always use “null” and just understand that people saying “lightlike” mean the same thing.
answered Apr 6 at 20:17
DaleDale
6,6921829
6,6921829
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470979%2fminkowski-space%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In the future, please use MathJax, not HTML markup, to display math. Thanks.
$endgroup$
– G. Smith
Apr 6 at 22:38