What is the offset in a seaplane's hull?What are the circles/holes ahead of the wing of an MD-82?What is this metal plate below the door?What are the disadvantages of a twin boom aircraft?What are these two tail elements of the Avro RJ100?Why were the speed records set by seaplanes in the early thirties?What is the purpose of a small wing near the cockpit on the front of some planes?What is this pipe on the tail of this helicopter?What is this air-scoop behind the cockpit of the Polikarpov I-153 and Stearman?What are the hinged(?) structures in front of the F-4 Phantom's intakes?What is the weight of the fuselage (only) of the Boeing 747?
Why did C use the -> operator instead of reusing the . operator?
Why did some of my point & shoot film photos come back with one third light white or orange?
Is there really no use for MD5 anymore?
What happened to Captain America in Endgame?
Is Diceware more secure than a long passphrase?
Function pointer with named arguments?
How come there are so many candidates for the 2020 Democratic party presidential nomination?
Initiative: Do I lose my attack/action if my target moves or dies before my turn in combat?
Pulling the rope with one hand is as heavy as with two hands?
Was there a Viking Exchange as well as a Columbian one?
Can someone publish a story that happened to you?
'regex' and 'name' directives in find
How did Captain America manage to do this?
How much cash can I safely carry into the USA and avoid civil forfeiture?
How can I get this effect? Please see the attached image
How to fry ground beef so it is well-browned
How could Tony Stark make this in Endgame?
Does any yogic siddhi let a human to be simultaneously present at two different places physically?
Rivers without rain
Read line from file and process something
How to limit Drive Letters Windows assigns to new removable USB drives
What is the most expensive material in the world that could be used to create Pun-Pun's lute?
Re-entry to Germany after vacation using blue card
Multiple options vs single option UI
What is the offset in a seaplane's hull?
What are the circles/holes ahead of the wing of an MD-82?What is this metal plate below the door?What are the disadvantages of a twin boom aircraft?What are these two tail elements of the Avro RJ100?Why were the speed records set by seaplanes in the early thirties?What is the purpose of a small wing near the cockpit on the front of some planes?What is this pipe on the tail of this helicopter?What is this air-scoop behind the cockpit of the Polikarpov I-153 and Stearman?What are the hinged(?) structures in front of the F-4 Phantom's intakes?What is the weight of the fuselage (only) of the Boeing 747?
$begingroup$
I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know.
It appears to be neither a hydrodynamic nor aerodynamic feature. I could not find clue by myself as I don't know this feature's name.
My question, what is its name and purpose?
(wikimedia.org)
aircraft-design feature-identification fuselage seaplane
$endgroup$
add a comment |
$begingroup$
I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know.
It appears to be neither a hydrodynamic nor aerodynamic feature. I could not find clue by myself as I don't know this feature's name.
My question, what is its name and purpose?
(wikimedia.org)
aircraft-design feature-identification fuselage seaplane
$endgroup$
add a comment |
$begingroup$
I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know.
It appears to be neither a hydrodynamic nor aerodynamic feature. I could not find clue by myself as I don't know this feature's name.
My question, what is its name and purpose?
(wikimedia.org)
aircraft-design feature-identification fuselage seaplane
$endgroup$
I noticed there is a little offset in a seaplane's hull (highlighted in the following picture). I suppose this is useful as it exists in all the seaplanes I know.
It appears to be neither a hydrodynamic nor aerodynamic feature. I could not find clue by myself as I don't know this feature's name.
My question, what is its name and purpose?
(wikimedia.org)
aircraft-design feature-identification fuselage seaplane
aircraft-design feature-identification fuselage seaplane
edited Apr 7 at 8:26
Notts90
2,17131641
2,17131641
asked Apr 6 at 12:09
Manu HManu H
5,7831161140
5,7831161140
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.
However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.
The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to[o] far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.
$endgroup$
8
$begingroup$
Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
$endgroup$
– Graham
Apr 6 at 23:41
2
$begingroup$
@Graham I think the demand for better sea planes died around the time the Sea Dart and the Caspian Sea Monster. (Both of which incidentally had a different solution to the lift off from water problem than the step.) So lots of cool ideas but nobody to pay for actually using them.
$endgroup$
– Ville Niemi
Apr 7 at 20:16
$begingroup$
@VilleNiemi Yes, that was my thinking too. It did seem like something they could have tried before then, but I guess no-one did.
$endgroup$
– Graham
Apr 7 at 20:47
$begingroup$
A retractable fairing would complicate the design: the fairing has to seal perfectly against the step when it's extended, otherwise you're creating a giant scoop. It has to be sturdy enough not to be ripped off by the water. etc.
$endgroup$
– Hobbes
Apr 8 at 8:55
$begingroup$
No, the angled part allows for rotating. The step reduces water drag.
$endgroup$
– bogl
Apr 8 at 8:58
|
show 1 more comment
$begingroup$
It's called a hull step. Below is with and without:
It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.
Source: Laté 631 Replica - Chapter 3 - Hydrodynamics
$endgroup$
add a comment |
$begingroup$
As everybody has said, it's called a 'step'.
But it's nothing to do with buoyancy, it's to do with the opposite effect - water suction. Without the step you will never get the airplane off the water simply due to the suction of the water clinging onto the airplane.
The step forces a break in the water-suction, in the case of the Catalina above probably halving it, which then allows the lift of the airplane to overpower the remaining water suction.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "528"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62088%2fwhat-is-the-offset-in-a-seaplanes-hull%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.
However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.
The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to[o] far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.
$endgroup$
8
$begingroup$
Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
$endgroup$
– Graham
Apr 6 at 23:41
2
$begingroup$
@Graham I think the demand for better sea planes died around the time the Sea Dart and the Caspian Sea Monster. (Both of which incidentally had a different solution to the lift off from water problem than the step.) So lots of cool ideas but nobody to pay for actually using them.
$endgroup$
– Ville Niemi
Apr 7 at 20:16
$begingroup$
@VilleNiemi Yes, that was my thinking too. It did seem like something they could have tried before then, but I guess no-one did.
$endgroup$
– Graham
Apr 7 at 20:47
$begingroup$
A retractable fairing would complicate the design: the fairing has to seal perfectly against the step when it's extended, otherwise you're creating a giant scoop. It has to be sturdy enough not to be ripped off by the water. etc.
$endgroup$
– Hobbes
Apr 8 at 8:55
$begingroup$
No, the angled part allows for rotating. The step reduces water drag.
$endgroup$
– bogl
Apr 8 at 8:58
|
show 1 more comment
$begingroup$
That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.
However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.
The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to[o] far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.
$endgroup$
8
$begingroup$
Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
$endgroup$
– Graham
Apr 6 at 23:41
2
$begingroup$
@Graham I think the demand for better sea planes died around the time the Sea Dart and the Caspian Sea Monster. (Both of which incidentally had a different solution to the lift off from water problem than the step.) So lots of cool ideas but nobody to pay for actually using them.
$endgroup$
– Ville Niemi
Apr 7 at 20:16
$begingroup$
@VilleNiemi Yes, that was my thinking too. It did seem like something they could have tried before then, but I guess no-one did.
$endgroup$
– Graham
Apr 7 at 20:47
$begingroup$
A retractable fairing would complicate the design: the fairing has to seal perfectly against the step when it's extended, otherwise you're creating a giant scoop. It has to be sturdy enough not to be ripped off by the water. etc.
$endgroup$
– Hobbes
Apr 8 at 8:55
$begingroup$
No, the angled part allows for rotating. The step reduces water drag.
$endgroup$
– bogl
Apr 8 at 8:58
|
show 1 more comment
$begingroup$
That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.
However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.
The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to[o] far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.
$endgroup$
That's called the step. Without it, you'd have to fight against the buoyancy of the rear end of the hull when you rotate for takeoff.
However, a seaplane float or hull must be designed to permit the seaplane to be rotated or pitched up to increase the wing's angle of attack and gain the most lift for takeoffs and landings. Thus, the underside of the float or hull has a sudden break in its longitudinal lines at the approximate point around which the seaplane rotates into the lift off attitude. This break, called a "step," also provides a means of interrupting the capillary or adhesive properties of the water.
The water can then flow freely behind the step, resulting in minimum surface friction so the seaplane can lift out of the water. The steps are located slightly behind the airplane's centre of gravity, approximately at the point where the main wheels of a landplane are located. If the steps were located to[o] far aft or forward of this point, it would be difficult, if not impossible, to rotate the airplane into a pitch-up attitude prior to planing (rising partly out of the water while moving at high speed) or lift off. Although steps are necessary, the sharp break along the float's or hull's underside causes structural stress concentration, and in flight produces considerable drag because of the eddying turbulence it creates in the airflow.
edited Apr 8 at 8:50
Federico♦
26.5k16108157
26.5k16108157
answered Apr 6 at 12:32
HobbesHobbes
4,6451318
4,6451318
8
$begingroup$
Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
$endgroup$
– Graham
Apr 6 at 23:41
2
$begingroup$
@Graham I think the demand for better sea planes died around the time the Sea Dart and the Caspian Sea Monster. (Both of which incidentally had a different solution to the lift off from water problem than the step.) So lots of cool ideas but nobody to pay for actually using them.
$endgroup$
– Ville Niemi
Apr 7 at 20:16
$begingroup$
@VilleNiemi Yes, that was my thinking too. It did seem like something they could have tried before then, but I guess no-one did.
$endgroup$
– Graham
Apr 7 at 20:47
$begingroup$
A retractable fairing would complicate the design: the fairing has to seal perfectly against the step when it's extended, otherwise you're creating a giant scoop. It has to be sturdy enough not to be ripped off by the water. etc.
$endgroup$
– Hobbes
Apr 8 at 8:55
$begingroup$
No, the angled part allows for rotating. The step reduces water drag.
$endgroup$
– bogl
Apr 8 at 8:58
|
show 1 more comment
8
$begingroup$
Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
$endgroup$
– Graham
Apr 6 at 23:41
2
$begingroup$
@Graham I think the demand for better sea planes died around the time the Sea Dart and the Caspian Sea Monster. (Both of which incidentally had a different solution to the lift off from water problem than the step.) So lots of cool ideas but nobody to pay for actually using them.
$endgroup$
– Ville Niemi
Apr 7 at 20:16
$begingroup$
@VilleNiemi Yes, that was my thinking too. It did seem like something they could have tried before then, but I guess no-one did.
$endgroup$
– Graham
Apr 7 at 20:47
$begingroup$
A retractable fairing would complicate the design: the fairing has to seal perfectly against the step when it's extended, otherwise you're creating a giant scoop. It has to be sturdy enough not to be ripped off by the water. etc.
$endgroup$
– Hobbes
Apr 8 at 8:55
$begingroup$
No, the angled part allows for rotating. The step reduces water drag.
$endgroup$
– bogl
Apr 8 at 8:58
8
8
$begingroup$
Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
$endgroup$
– Graham
Apr 6 at 23:41
$begingroup$
Re the drag in flight, an obvious question would be whether anyone had a retractable fairing behind the step to solve that problem? I hit Google and found a few places speculating about that (including US patent US6042052A in 1998), but no evidence of designers actually using one.
$endgroup$
– Graham
Apr 6 at 23:41
2
2
$begingroup$
@Graham I think the demand for better sea planes died around the time the Sea Dart and the Caspian Sea Monster. (Both of which incidentally had a different solution to the lift off from water problem than the step.) So lots of cool ideas but nobody to pay for actually using them.
$endgroup$
– Ville Niemi
Apr 7 at 20:16
$begingroup$
@Graham I think the demand for better sea planes died around the time the Sea Dart and the Caspian Sea Monster. (Both of which incidentally had a different solution to the lift off from water problem than the step.) So lots of cool ideas but nobody to pay for actually using them.
$endgroup$
– Ville Niemi
Apr 7 at 20:16
$begingroup$
@VilleNiemi Yes, that was my thinking too. It did seem like something they could have tried before then, but I guess no-one did.
$endgroup$
– Graham
Apr 7 at 20:47
$begingroup$
@VilleNiemi Yes, that was my thinking too. It did seem like something they could have tried before then, but I guess no-one did.
$endgroup$
– Graham
Apr 7 at 20:47
$begingroup$
A retractable fairing would complicate the design: the fairing has to seal perfectly against the step when it's extended, otherwise you're creating a giant scoop. It has to be sturdy enough not to be ripped off by the water. etc.
$endgroup$
– Hobbes
Apr 8 at 8:55
$begingroup$
A retractable fairing would complicate the design: the fairing has to seal perfectly against the step when it's extended, otherwise you're creating a giant scoop. It has to be sturdy enough not to be ripped off by the water. etc.
$endgroup$
– Hobbes
Apr 8 at 8:55
$begingroup$
No, the angled part allows for rotating. The step reduces water drag.
$endgroup$
– bogl
Apr 8 at 8:58
$begingroup$
No, the angled part allows for rotating. The step reduces water drag.
$endgroup$
– bogl
Apr 8 at 8:58
|
show 1 more comment
$begingroup$
It's called a hull step. Below is with and without:
It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.
Source: Laté 631 Replica - Chapter 3 - Hydrodynamics
$endgroup$
add a comment |
$begingroup$
It's called a hull step. Below is with and without:
It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.
Source: Laté 631 Replica - Chapter 3 - Hydrodynamics
$endgroup$
add a comment |
$begingroup$
It's called a hull step. Below is with and without:
It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.
Source: Laté 631 Replica - Chapter 3 - Hydrodynamics
$endgroup$
It's called a hull step. Below is with and without:
It reduces water drag. As the plane gains speed and the aft body is lifted, only the forward hull will be in contact with the water.
Source: Laté 631 Replica - Chapter 3 - Hydrodynamics
answered Apr 6 at 12:32
ymb1ymb1
71.5k7231385
71.5k7231385
add a comment |
add a comment |
$begingroup$
As everybody has said, it's called a 'step'.
But it's nothing to do with buoyancy, it's to do with the opposite effect - water suction. Without the step you will never get the airplane off the water simply due to the suction of the water clinging onto the airplane.
The step forces a break in the water-suction, in the case of the Catalina above probably halving it, which then allows the lift of the airplane to overpower the remaining water suction.
$endgroup$
add a comment |
$begingroup$
As everybody has said, it's called a 'step'.
But it's nothing to do with buoyancy, it's to do with the opposite effect - water suction. Without the step you will never get the airplane off the water simply due to the suction of the water clinging onto the airplane.
The step forces a break in the water-suction, in the case of the Catalina above probably halving it, which then allows the lift of the airplane to overpower the remaining water suction.
$endgroup$
add a comment |
$begingroup$
As everybody has said, it's called a 'step'.
But it's nothing to do with buoyancy, it's to do with the opposite effect - water suction. Without the step you will never get the airplane off the water simply due to the suction of the water clinging onto the airplane.
The step forces a break in the water-suction, in the case of the Catalina above probably halving it, which then allows the lift of the airplane to overpower the remaining water suction.
$endgroup$
As everybody has said, it's called a 'step'.
But it's nothing to do with buoyancy, it's to do with the opposite effect - water suction. Without the step you will never get the airplane off the water simply due to the suction of the water clinging onto the airplane.
The step forces a break in the water-suction, in the case of the Catalina above probably halving it, which then allows the lift of the airplane to overpower the remaining water suction.
answered Apr 8 at 8:45
RACRAC
2,58559
2,58559
add a comment |
add a comment |
Thanks for contributing an answer to Aviation Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62088%2fwhat-is-the-offset-in-a-seaplanes-hull%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown