Current sense amp + op-amp buffer + ADC: Measuring down to 0 with single supplyMeasuring Resistance of a Wire With an ADCSurge protection for ADC inputs measuring DC from batteries and switching supply?Interfacing Current shunt monitor with 16bit ADCHow does an ADC with an unequal split supply work?Signal buffer with op-amp clamping and voltage biasDAC based voltage supply (current buffered) with current monitoring: shorting/instability?How to calculate the value of a current sense resistor for use with an ADC?Output to ground rail on single-supply op-amp with grounded loadIs a buffer needed to measure the output of a power supply using an ADC?Single supply op amp with input attenuator

How to deal with taxi scam when on vacation?

Python: Check if string and its substring are existing in the same list

Russian cases: A few examples, I'm really confused

AG Cluster db upgrade by vendor

PTIJ: Who should I vote for? (21st Knesset Edition)

What are substitutions for coconut in curry?

Is having access to past exams cheating and, if yes, could it be proven just by a good grade?

What's causing this power spike in STM32 low power mode

How to terminate ping <URL> &

Is it possible to upcast ritual spells?

Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible

Did Ender ever learn that he killed Stilson and/or Bonzo?

How can I track script wich gives me "command not found" right after the login?

Define, (actually define) the "stability" and "energy" of a compound

How to write cleanly even if my character uses expletive language?

What is this large pipe coming out of my roof?

It's a yearly task, alright

Employee lack of ownership

Pass associative array as parameter list to script

What should tie a collection of short-stories together?

Sailing the cryptic seas

Co-worker team leader wants to inject his friend's awful software into our development. What should I say to our common boss?

Why did it take so long to abandon sail after steamships were demonstrated?

How can I make assignment persist between sessions?



Current sense amp + op-amp buffer + ADC: Measuring down to 0 with single supply


Measuring Resistance of a Wire With an ADCSurge protection for ADC inputs measuring DC from batteries and switching supply?Interfacing Current shunt monitor with 16bit ADCHow does an ADC with an unequal split supply work?Signal buffer with op-amp clamping and voltage biasDAC based voltage supply (current buffered) with current monitoring: shorting/instability?How to calculate the value of a current sense resistor for use with an ADC?Output to ground rail on single-supply op-amp with grounded loadIs a buffer needed to measure the output of a power supply using an ADC?Single supply op amp with input attenuator













6












$begingroup$


I'm thinking about current sensing with a high dynamic range (10mA-20A) and using LTC6102 as a high-side current sense amp (the voltage would be 54.6V max, a 13S6P Li-ion battery).



The ADC I'm planning to use is LTC1407 (12bit 1.5Msps).



Planning to use OPA2365 as a unity-gain buffer between the current-sense amp and the ADC.



The current-sense amp provides an output current proportional to the sense voltage and given the high voltage and small package size the output current has to be 1mA full scale which requires a rather high value output resistor and thus a buffer is needed between the current-sense amp and the ADC.



The op-amp requires a small (-0.1V) negative supply for the output to go down to 0 and it's important to go down to 0 in my case because of the high dynamic range I want.



I could try and do a negative supply e.g. a crude one with an additional battery between ground and the negative supply of the op-amp but I would rather avoid it to simplify the circuit.



Is there a way that I can measure down to 0 without a negative supply voltage for the op-amp in this case?



I'm thinking of maybe putting a diode in series with the output resistor of the current-sense amp to offset the output voltage and then correct the scale of the ADC output accordingly, but I'm not sure if this will work. For low currents the diode would be in the region where small current changes would cause comparable voltage changes I suppose.










share|improve this question









$endgroup$







  • 4




    $begingroup$
    There are little charge pump IC intended to produce just a little negative voltage for things like this. From either Analog Devices, TI, or Linear. I don't remember.
    $endgroup$
    – Toor
    17 hours ago











  • $begingroup$
    No offsets will work, as going down to true zero volts is a function of the op-amps output stage. Some rail-to-rail op-amps can get down to within 100mV of zero, but it is very easy to create a negative voltage from a TLC555 timer and some 1N4148 diodes. You cannot have what you want without some type of compromise.
    $endgroup$
    – Sparky256
    17 hours ago










  • $begingroup$
    ti.com/product/TPS60403
    $endgroup$
    – Toor
    17 hours ago










  • $begingroup$
    You have selected a differential ADC, you could use a slightly elevated voltage as the OPA2365 reference and for the ADC negative input, like 0.2V.
    $endgroup$
    – pserra
    16 hours ago
















6












$begingroup$


I'm thinking about current sensing with a high dynamic range (10mA-20A) and using LTC6102 as a high-side current sense amp (the voltage would be 54.6V max, a 13S6P Li-ion battery).



The ADC I'm planning to use is LTC1407 (12bit 1.5Msps).



Planning to use OPA2365 as a unity-gain buffer between the current-sense amp and the ADC.



The current-sense amp provides an output current proportional to the sense voltage and given the high voltage and small package size the output current has to be 1mA full scale which requires a rather high value output resistor and thus a buffer is needed between the current-sense amp and the ADC.



The op-amp requires a small (-0.1V) negative supply for the output to go down to 0 and it's important to go down to 0 in my case because of the high dynamic range I want.



I could try and do a negative supply e.g. a crude one with an additional battery between ground and the negative supply of the op-amp but I would rather avoid it to simplify the circuit.



Is there a way that I can measure down to 0 without a negative supply voltage for the op-amp in this case?



I'm thinking of maybe putting a diode in series with the output resistor of the current-sense amp to offset the output voltage and then correct the scale of the ADC output accordingly, but I'm not sure if this will work. For low currents the diode would be in the region where small current changes would cause comparable voltage changes I suppose.










share|improve this question









$endgroup$







  • 4




    $begingroup$
    There are little charge pump IC intended to produce just a little negative voltage for things like this. From either Analog Devices, TI, or Linear. I don't remember.
    $endgroup$
    – Toor
    17 hours ago











  • $begingroup$
    No offsets will work, as going down to true zero volts is a function of the op-amps output stage. Some rail-to-rail op-amps can get down to within 100mV of zero, but it is very easy to create a negative voltage from a TLC555 timer and some 1N4148 diodes. You cannot have what you want without some type of compromise.
    $endgroup$
    – Sparky256
    17 hours ago










  • $begingroup$
    ti.com/product/TPS60403
    $endgroup$
    – Toor
    17 hours ago










  • $begingroup$
    You have selected a differential ADC, you could use a slightly elevated voltage as the OPA2365 reference and for the ADC negative input, like 0.2V.
    $endgroup$
    – pserra
    16 hours ago














6












6








6


3



$begingroup$


I'm thinking about current sensing with a high dynamic range (10mA-20A) and using LTC6102 as a high-side current sense amp (the voltage would be 54.6V max, a 13S6P Li-ion battery).



The ADC I'm planning to use is LTC1407 (12bit 1.5Msps).



Planning to use OPA2365 as a unity-gain buffer between the current-sense amp and the ADC.



The current-sense amp provides an output current proportional to the sense voltage and given the high voltage and small package size the output current has to be 1mA full scale which requires a rather high value output resistor and thus a buffer is needed between the current-sense amp and the ADC.



The op-amp requires a small (-0.1V) negative supply for the output to go down to 0 and it's important to go down to 0 in my case because of the high dynamic range I want.



I could try and do a negative supply e.g. a crude one with an additional battery between ground and the negative supply of the op-amp but I would rather avoid it to simplify the circuit.



Is there a way that I can measure down to 0 without a negative supply voltage for the op-amp in this case?



I'm thinking of maybe putting a diode in series with the output resistor of the current-sense amp to offset the output voltage and then correct the scale of the ADC output accordingly, but I'm not sure if this will work. For low currents the diode would be in the region where small current changes would cause comparable voltage changes I suppose.










share|improve this question









$endgroup$




I'm thinking about current sensing with a high dynamic range (10mA-20A) and using LTC6102 as a high-side current sense amp (the voltage would be 54.6V max, a 13S6P Li-ion battery).



The ADC I'm planning to use is LTC1407 (12bit 1.5Msps).



Planning to use OPA2365 as a unity-gain buffer between the current-sense amp and the ADC.



The current-sense amp provides an output current proportional to the sense voltage and given the high voltage and small package size the output current has to be 1mA full scale which requires a rather high value output resistor and thus a buffer is needed between the current-sense amp and the ADC.



The op-amp requires a small (-0.1V) negative supply for the output to go down to 0 and it's important to go down to 0 in my case because of the high dynamic range I want.



I could try and do a negative supply e.g. a crude one with an additional battery between ground and the negative supply of the op-amp but I would rather avoid it to simplify the circuit.



Is there a way that I can measure down to 0 without a negative supply voltage for the op-amp in this case?



I'm thinking of maybe putting a diode in series with the output resistor of the current-sense amp to offset the output voltage and then correct the scale of the ADC output accordingly, but I'm not sure if this will work. For low currents the diode would be in the region where small current changes would cause comparable voltage changes I suppose.







operational-amplifier adc current-measurement single-supply-op-amp






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 17 hours ago









axkaxk

399315




399315







  • 4




    $begingroup$
    There are little charge pump IC intended to produce just a little negative voltage for things like this. From either Analog Devices, TI, or Linear. I don't remember.
    $endgroup$
    – Toor
    17 hours ago











  • $begingroup$
    No offsets will work, as going down to true zero volts is a function of the op-amps output stage. Some rail-to-rail op-amps can get down to within 100mV of zero, but it is very easy to create a negative voltage from a TLC555 timer and some 1N4148 diodes. You cannot have what you want without some type of compromise.
    $endgroup$
    – Sparky256
    17 hours ago










  • $begingroup$
    ti.com/product/TPS60403
    $endgroup$
    – Toor
    17 hours ago










  • $begingroup$
    You have selected a differential ADC, you could use a slightly elevated voltage as the OPA2365 reference and for the ADC negative input, like 0.2V.
    $endgroup$
    – pserra
    16 hours ago













  • 4




    $begingroup$
    There are little charge pump IC intended to produce just a little negative voltage for things like this. From either Analog Devices, TI, or Linear. I don't remember.
    $endgroup$
    – Toor
    17 hours ago











  • $begingroup$
    No offsets will work, as going down to true zero volts is a function of the op-amps output stage. Some rail-to-rail op-amps can get down to within 100mV of zero, but it is very easy to create a negative voltage from a TLC555 timer and some 1N4148 diodes. You cannot have what you want without some type of compromise.
    $endgroup$
    – Sparky256
    17 hours ago










  • $begingroup$
    ti.com/product/TPS60403
    $endgroup$
    – Toor
    17 hours ago










  • $begingroup$
    You have selected a differential ADC, you could use a slightly elevated voltage as the OPA2365 reference and for the ADC negative input, like 0.2V.
    $endgroup$
    – pserra
    16 hours ago








4




4




$begingroup$
There are little charge pump IC intended to produce just a little negative voltage for things like this. From either Analog Devices, TI, or Linear. I don't remember.
$endgroup$
– Toor
17 hours ago





$begingroup$
There are little charge pump IC intended to produce just a little negative voltage for things like this. From either Analog Devices, TI, or Linear. I don't remember.
$endgroup$
– Toor
17 hours ago













$begingroup$
No offsets will work, as going down to true zero volts is a function of the op-amps output stage. Some rail-to-rail op-amps can get down to within 100mV of zero, but it is very easy to create a negative voltage from a TLC555 timer and some 1N4148 diodes. You cannot have what you want without some type of compromise.
$endgroup$
– Sparky256
17 hours ago




$begingroup$
No offsets will work, as going down to true zero volts is a function of the op-amps output stage. Some rail-to-rail op-amps can get down to within 100mV of zero, but it is very easy to create a negative voltage from a TLC555 timer and some 1N4148 diodes. You cannot have what you want without some type of compromise.
$endgroup$
– Sparky256
17 hours ago












$begingroup$
ti.com/product/TPS60403
$endgroup$
– Toor
17 hours ago




$begingroup$
ti.com/product/TPS60403
$endgroup$
– Toor
17 hours ago












$begingroup$
You have selected a differential ADC, you could use a slightly elevated voltage as the OPA2365 reference and for the ADC negative input, like 0.2V.
$endgroup$
– pserra
16 hours ago





$begingroup$
You have selected a differential ADC, you could use a slightly elevated voltage as the OPA2365 reference and for the ADC negative input, like 0.2V.
$endgroup$
– pserra
16 hours ago











3 Answers
3






active

oldest

votes


















12












$begingroup$

You can get a small negative voltage by using an LM7705 which produces -232mV nominal output voltage using a charge pump.



enter image description here



The advantage of using that part over a typical garden-variety inverting charge pump converter (eg. +5 to -5) or inverting boost converter is that the worst-case negative output voltage generally falls within the maximum negative input voltage of something like your ADC converter (-300mV in your case, which is typical), so you don't need to try to clamp the op-amp output/ADC input voltage near ground.



On the other hand, it's probably more expensive than some other solutions that would take more engineering effort, so this is just one of many possibilities.






share|improve this answer









$endgroup$












  • $begingroup$
    How do I estimate the impact of the switching noise of the charge pump on the performance of the op-amp? Should I look at the op-amp's PSRR?
    $endgroup$
    – axk
    16 hours ago










  • $begingroup$
    Output Voltage Ripple 4 mVpp 91kHz OPA365 60dB PSRR
    $endgroup$
    – Sunnyskyguy EE75
    15 hours ago











  • $begingroup$
    Yes, Tony gave you the parameters. Of course you can filter it further if you need to.
    $endgroup$
    – Spehro Pefhany
    15 hours ago






  • 1




    $begingroup$
    Package has external pins on 0.5mm centers, very easy to solder in many ways.
    $endgroup$
    – Sparky256
    14 hours ago


















4












$begingroup$

You could generate a small positive voltage, and use it as a virtual ground. Since you selected a differential ADC, its large common mode rejection can allow you to get away with a very simple way of generating that 0.2V reference voltage.





schematic





simulate this circuit – Schematic created using CircuitLab






share|improve this answer









$endgroup$




















    -3












    $begingroup$

    Others have given some tips, but you need to be aware that what you're trying to do a very iffy deal. The problem is that, effectively, you're trying to do





    schematic





    simulate this circuit – Schematic created using CircuitLab



    The problem with this is that it's not accurate. You see those grounds? Trust me, at 20 amps, they are not all at the same voltage. For the current levels you're talking about, stray resistance will be a big problem. It will depend critically on pc layout and system wiring. For that matter, since copper has a rather large resistance tempco, you may have problems with temperature sensitivity due to your stray resistances changing. If you have any other part of the system which draws much current, the issue can become even worse.



    Assuming that you are using a very small sense resistor, with small voltages produced in order to avoid large power dissipation in your resistor, I would really recommend a differential measurement, also called a Kelvin connection.





    schematic





    simulate this circuit



    where your amplifier is an instrumentation or differential amplifier.



    Trust me on this, single-ended current measurement, other than very crude limit sensing, is a recipe for heartbreak. Trying to do it with a single-supply amplifier only makes it worse.






    share|improve this answer









    $endgroup$








    • 2




      $begingroup$
      -1 The problems you state are valid, but does not solve the question at all. He is already using a differential amplifier, and he wants to know how to measure close to GND which you solved by placing V2, but you skipped how that was implemented.
      $endgroup$
      – Linkyyy
      8 hours ago










    • $begingroup$
      Unless I misread the question, the OP is talking about high-side current sense, your schematic is low-side.
      $endgroup$
      – Dmitry Grigoryev
      7 hours ago










    • $begingroup$
      My understanding is that when I'm doing high-side current sensing the big current will go through the sense resistor only and I'm planning to use 5mR or 10mR 5W resistor or 2 of 10mR 5W in parallel and it rarely actually reaches the peak of 20A so I hope I should be fine. I estimate the consumption of the circuit with all digital stuff and a bluetooth transmitter should be no more than 70mA.
      $endgroup$
      – axk
      6 hours ago











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("schematics", function ()
    StackExchange.schematics.init();
    );
    , "cicuitlab");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "135"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427315%2fcurrent-sense-amp-op-amp-buffer-adc-measuring-down-to-0-with-single-supply%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    12












    $begingroup$

    You can get a small negative voltage by using an LM7705 which produces -232mV nominal output voltage using a charge pump.



    enter image description here



    The advantage of using that part over a typical garden-variety inverting charge pump converter (eg. +5 to -5) or inverting boost converter is that the worst-case negative output voltage generally falls within the maximum negative input voltage of something like your ADC converter (-300mV in your case, which is typical), so you don't need to try to clamp the op-amp output/ADC input voltage near ground.



    On the other hand, it's probably more expensive than some other solutions that would take more engineering effort, so this is just one of many possibilities.






    share|improve this answer









    $endgroup$












    • $begingroup$
      How do I estimate the impact of the switching noise of the charge pump on the performance of the op-amp? Should I look at the op-amp's PSRR?
      $endgroup$
      – axk
      16 hours ago










    • $begingroup$
      Output Voltage Ripple 4 mVpp 91kHz OPA365 60dB PSRR
      $endgroup$
      – Sunnyskyguy EE75
      15 hours ago











    • $begingroup$
      Yes, Tony gave you the parameters. Of course you can filter it further if you need to.
      $endgroup$
      – Spehro Pefhany
      15 hours ago






    • 1




      $begingroup$
      Package has external pins on 0.5mm centers, very easy to solder in many ways.
      $endgroup$
      – Sparky256
      14 hours ago















    12












    $begingroup$

    You can get a small negative voltage by using an LM7705 which produces -232mV nominal output voltage using a charge pump.



    enter image description here



    The advantage of using that part over a typical garden-variety inverting charge pump converter (eg. +5 to -5) or inverting boost converter is that the worst-case negative output voltage generally falls within the maximum negative input voltage of something like your ADC converter (-300mV in your case, which is typical), so you don't need to try to clamp the op-amp output/ADC input voltage near ground.



    On the other hand, it's probably more expensive than some other solutions that would take more engineering effort, so this is just one of many possibilities.






    share|improve this answer









    $endgroup$












    • $begingroup$
      How do I estimate the impact of the switching noise of the charge pump on the performance of the op-amp? Should I look at the op-amp's PSRR?
      $endgroup$
      – axk
      16 hours ago










    • $begingroup$
      Output Voltage Ripple 4 mVpp 91kHz OPA365 60dB PSRR
      $endgroup$
      – Sunnyskyguy EE75
      15 hours ago











    • $begingroup$
      Yes, Tony gave you the parameters. Of course you can filter it further if you need to.
      $endgroup$
      – Spehro Pefhany
      15 hours ago






    • 1




      $begingroup$
      Package has external pins on 0.5mm centers, very easy to solder in many ways.
      $endgroup$
      – Sparky256
      14 hours ago













    12












    12








    12





    $begingroup$

    You can get a small negative voltage by using an LM7705 which produces -232mV nominal output voltage using a charge pump.



    enter image description here



    The advantage of using that part over a typical garden-variety inverting charge pump converter (eg. +5 to -5) or inverting boost converter is that the worst-case negative output voltage generally falls within the maximum negative input voltage of something like your ADC converter (-300mV in your case, which is typical), so you don't need to try to clamp the op-amp output/ADC input voltage near ground.



    On the other hand, it's probably more expensive than some other solutions that would take more engineering effort, so this is just one of many possibilities.






    share|improve this answer









    $endgroup$



    You can get a small negative voltage by using an LM7705 which produces -232mV nominal output voltage using a charge pump.



    enter image description here



    The advantage of using that part over a typical garden-variety inverting charge pump converter (eg. +5 to -5) or inverting boost converter is that the worst-case negative output voltage generally falls within the maximum negative input voltage of something like your ADC converter (-300mV in your case, which is typical), so you don't need to try to clamp the op-amp output/ADC input voltage near ground.



    On the other hand, it's probably more expensive than some other solutions that would take more engineering effort, so this is just one of many possibilities.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 16 hours ago









    Spehro PefhanySpehro Pefhany

    210k5161424




    210k5161424











    • $begingroup$
      How do I estimate the impact of the switching noise of the charge pump on the performance of the op-amp? Should I look at the op-amp's PSRR?
      $endgroup$
      – axk
      16 hours ago










    • $begingroup$
      Output Voltage Ripple 4 mVpp 91kHz OPA365 60dB PSRR
      $endgroup$
      – Sunnyskyguy EE75
      15 hours ago











    • $begingroup$
      Yes, Tony gave you the parameters. Of course you can filter it further if you need to.
      $endgroup$
      – Spehro Pefhany
      15 hours ago






    • 1




      $begingroup$
      Package has external pins on 0.5mm centers, very easy to solder in many ways.
      $endgroup$
      – Sparky256
      14 hours ago
















    • $begingroup$
      How do I estimate the impact of the switching noise of the charge pump on the performance of the op-amp? Should I look at the op-amp's PSRR?
      $endgroup$
      – axk
      16 hours ago










    • $begingroup$
      Output Voltage Ripple 4 mVpp 91kHz OPA365 60dB PSRR
      $endgroup$
      – Sunnyskyguy EE75
      15 hours ago











    • $begingroup$
      Yes, Tony gave you the parameters. Of course you can filter it further if you need to.
      $endgroup$
      – Spehro Pefhany
      15 hours ago






    • 1




      $begingroup$
      Package has external pins on 0.5mm centers, very easy to solder in many ways.
      $endgroup$
      – Sparky256
      14 hours ago















    $begingroup$
    How do I estimate the impact of the switching noise of the charge pump on the performance of the op-amp? Should I look at the op-amp's PSRR?
    $endgroup$
    – axk
    16 hours ago




    $begingroup$
    How do I estimate the impact of the switching noise of the charge pump on the performance of the op-amp? Should I look at the op-amp's PSRR?
    $endgroup$
    – axk
    16 hours ago












    $begingroup$
    Output Voltage Ripple 4 mVpp 91kHz OPA365 60dB PSRR
    $endgroup$
    – Sunnyskyguy EE75
    15 hours ago





    $begingroup$
    Output Voltage Ripple 4 mVpp 91kHz OPA365 60dB PSRR
    $endgroup$
    – Sunnyskyguy EE75
    15 hours ago













    $begingroup$
    Yes, Tony gave you the parameters. Of course you can filter it further if you need to.
    $endgroup$
    – Spehro Pefhany
    15 hours ago




    $begingroup$
    Yes, Tony gave you the parameters. Of course you can filter it further if you need to.
    $endgroup$
    – Spehro Pefhany
    15 hours ago




    1




    1




    $begingroup$
    Package has external pins on 0.5mm centers, very easy to solder in many ways.
    $endgroup$
    – Sparky256
    14 hours ago




    $begingroup$
    Package has external pins on 0.5mm centers, very easy to solder in many ways.
    $endgroup$
    – Sparky256
    14 hours ago













    4












    $begingroup$

    You could generate a small positive voltage, and use it as a virtual ground. Since you selected a differential ADC, its large common mode rejection can allow you to get away with a very simple way of generating that 0.2V reference voltage.





    schematic





    simulate this circuit – Schematic created using CircuitLab






    share|improve this answer









    $endgroup$

















      4












      $begingroup$

      You could generate a small positive voltage, and use it as a virtual ground. Since you selected a differential ADC, its large common mode rejection can allow you to get away with a very simple way of generating that 0.2V reference voltage.





      schematic





      simulate this circuit – Schematic created using CircuitLab






      share|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        You could generate a small positive voltage, and use it as a virtual ground. Since you selected a differential ADC, its large common mode rejection can allow you to get away with a very simple way of generating that 0.2V reference voltage.





        schematic





        simulate this circuit – Schematic created using CircuitLab






        share|improve this answer









        $endgroup$



        You could generate a small positive voltage, and use it as a virtual ground. Since you selected a differential ADC, its large common mode rejection can allow you to get away with a very simple way of generating that 0.2V reference voltage.





        schematic





        simulate this circuit – Schematic created using CircuitLab







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 16 hours ago









        pserrapserra

        645313




        645313





















            -3












            $begingroup$

            Others have given some tips, but you need to be aware that what you're trying to do a very iffy deal. The problem is that, effectively, you're trying to do





            schematic





            simulate this circuit – Schematic created using CircuitLab



            The problem with this is that it's not accurate. You see those grounds? Trust me, at 20 amps, they are not all at the same voltage. For the current levels you're talking about, stray resistance will be a big problem. It will depend critically on pc layout and system wiring. For that matter, since copper has a rather large resistance tempco, you may have problems with temperature sensitivity due to your stray resistances changing. If you have any other part of the system which draws much current, the issue can become even worse.



            Assuming that you are using a very small sense resistor, with small voltages produced in order to avoid large power dissipation in your resistor, I would really recommend a differential measurement, also called a Kelvin connection.





            schematic





            simulate this circuit



            where your amplifier is an instrumentation or differential amplifier.



            Trust me on this, single-ended current measurement, other than very crude limit sensing, is a recipe for heartbreak. Trying to do it with a single-supply amplifier only makes it worse.






            share|improve this answer









            $endgroup$








            • 2




              $begingroup$
              -1 The problems you state are valid, but does not solve the question at all. He is already using a differential amplifier, and he wants to know how to measure close to GND which you solved by placing V2, but you skipped how that was implemented.
              $endgroup$
              – Linkyyy
              8 hours ago










            • $begingroup$
              Unless I misread the question, the OP is talking about high-side current sense, your schematic is low-side.
              $endgroup$
              – Dmitry Grigoryev
              7 hours ago










            • $begingroup$
              My understanding is that when I'm doing high-side current sensing the big current will go through the sense resistor only and I'm planning to use 5mR or 10mR 5W resistor or 2 of 10mR 5W in parallel and it rarely actually reaches the peak of 20A so I hope I should be fine. I estimate the consumption of the circuit with all digital stuff and a bluetooth transmitter should be no more than 70mA.
              $endgroup$
              – axk
              6 hours ago
















            -3












            $begingroup$

            Others have given some tips, but you need to be aware that what you're trying to do a very iffy deal. The problem is that, effectively, you're trying to do





            schematic





            simulate this circuit – Schematic created using CircuitLab



            The problem with this is that it's not accurate. You see those grounds? Trust me, at 20 amps, they are not all at the same voltage. For the current levels you're talking about, stray resistance will be a big problem. It will depend critically on pc layout and system wiring. For that matter, since copper has a rather large resistance tempco, you may have problems with temperature sensitivity due to your stray resistances changing. If you have any other part of the system which draws much current, the issue can become even worse.



            Assuming that you are using a very small sense resistor, with small voltages produced in order to avoid large power dissipation in your resistor, I would really recommend a differential measurement, also called a Kelvin connection.





            schematic





            simulate this circuit



            where your amplifier is an instrumentation or differential amplifier.



            Trust me on this, single-ended current measurement, other than very crude limit sensing, is a recipe for heartbreak. Trying to do it with a single-supply amplifier only makes it worse.






            share|improve this answer









            $endgroup$








            • 2




              $begingroup$
              -1 The problems you state are valid, but does not solve the question at all. He is already using a differential amplifier, and he wants to know how to measure close to GND which you solved by placing V2, but you skipped how that was implemented.
              $endgroup$
              – Linkyyy
              8 hours ago










            • $begingroup$
              Unless I misread the question, the OP is talking about high-side current sense, your schematic is low-side.
              $endgroup$
              – Dmitry Grigoryev
              7 hours ago










            • $begingroup$
              My understanding is that when I'm doing high-side current sensing the big current will go through the sense resistor only and I'm planning to use 5mR or 10mR 5W resistor or 2 of 10mR 5W in parallel and it rarely actually reaches the peak of 20A so I hope I should be fine. I estimate the consumption of the circuit with all digital stuff and a bluetooth transmitter should be no more than 70mA.
              $endgroup$
              – axk
              6 hours ago














            -3












            -3








            -3





            $begingroup$

            Others have given some tips, but you need to be aware that what you're trying to do a very iffy deal. The problem is that, effectively, you're trying to do





            schematic





            simulate this circuit – Schematic created using CircuitLab



            The problem with this is that it's not accurate. You see those grounds? Trust me, at 20 amps, they are not all at the same voltage. For the current levels you're talking about, stray resistance will be a big problem. It will depend critically on pc layout and system wiring. For that matter, since copper has a rather large resistance tempco, you may have problems with temperature sensitivity due to your stray resistances changing. If you have any other part of the system which draws much current, the issue can become even worse.



            Assuming that you are using a very small sense resistor, with small voltages produced in order to avoid large power dissipation in your resistor, I would really recommend a differential measurement, also called a Kelvin connection.





            schematic





            simulate this circuit



            where your amplifier is an instrumentation or differential amplifier.



            Trust me on this, single-ended current measurement, other than very crude limit sensing, is a recipe for heartbreak. Trying to do it with a single-supply amplifier only makes it worse.






            share|improve this answer









            $endgroup$



            Others have given some tips, but you need to be aware that what you're trying to do a very iffy deal. The problem is that, effectively, you're trying to do





            schematic





            simulate this circuit – Schematic created using CircuitLab



            The problem with this is that it's not accurate. You see those grounds? Trust me, at 20 amps, they are not all at the same voltage. For the current levels you're talking about, stray resistance will be a big problem. It will depend critically on pc layout and system wiring. For that matter, since copper has a rather large resistance tempco, you may have problems with temperature sensitivity due to your stray resistances changing. If you have any other part of the system which draws much current, the issue can become even worse.



            Assuming that you are using a very small sense resistor, with small voltages produced in order to avoid large power dissipation in your resistor, I would really recommend a differential measurement, also called a Kelvin connection.





            schematic





            simulate this circuit



            where your amplifier is an instrumentation or differential amplifier.



            Trust me on this, single-ended current measurement, other than very crude limit sensing, is a recipe for heartbreak. Trying to do it with a single-supply amplifier only makes it worse.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 14 hours ago









            WhatRoughBeastWhatRoughBeast

            50k22876




            50k22876







            • 2




              $begingroup$
              -1 The problems you state are valid, but does not solve the question at all. He is already using a differential amplifier, and he wants to know how to measure close to GND which you solved by placing V2, but you skipped how that was implemented.
              $endgroup$
              – Linkyyy
              8 hours ago










            • $begingroup$
              Unless I misread the question, the OP is talking about high-side current sense, your schematic is low-side.
              $endgroup$
              – Dmitry Grigoryev
              7 hours ago










            • $begingroup$
              My understanding is that when I'm doing high-side current sensing the big current will go through the sense resistor only and I'm planning to use 5mR or 10mR 5W resistor or 2 of 10mR 5W in parallel and it rarely actually reaches the peak of 20A so I hope I should be fine. I estimate the consumption of the circuit with all digital stuff and a bluetooth transmitter should be no more than 70mA.
              $endgroup$
              – axk
              6 hours ago













            • 2




              $begingroup$
              -1 The problems you state are valid, but does not solve the question at all. He is already using a differential amplifier, and he wants to know how to measure close to GND which you solved by placing V2, but you skipped how that was implemented.
              $endgroup$
              – Linkyyy
              8 hours ago










            • $begingroup$
              Unless I misread the question, the OP is talking about high-side current sense, your schematic is low-side.
              $endgroup$
              – Dmitry Grigoryev
              7 hours ago










            • $begingroup$
              My understanding is that when I'm doing high-side current sensing the big current will go through the sense resistor only and I'm planning to use 5mR or 10mR 5W resistor or 2 of 10mR 5W in parallel and it rarely actually reaches the peak of 20A so I hope I should be fine. I estimate the consumption of the circuit with all digital stuff and a bluetooth transmitter should be no more than 70mA.
              $endgroup$
              – axk
              6 hours ago








            2




            2




            $begingroup$
            -1 The problems you state are valid, but does not solve the question at all. He is already using a differential amplifier, and he wants to know how to measure close to GND which you solved by placing V2, but you skipped how that was implemented.
            $endgroup$
            – Linkyyy
            8 hours ago




            $begingroup$
            -1 The problems you state are valid, but does not solve the question at all. He is already using a differential amplifier, and he wants to know how to measure close to GND which you solved by placing V2, but you skipped how that was implemented.
            $endgroup$
            – Linkyyy
            8 hours ago












            $begingroup$
            Unless I misread the question, the OP is talking about high-side current sense, your schematic is low-side.
            $endgroup$
            – Dmitry Grigoryev
            7 hours ago




            $begingroup$
            Unless I misread the question, the OP is talking about high-side current sense, your schematic is low-side.
            $endgroup$
            – Dmitry Grigoryev
            7 hours ago












            $begingroup$
            My understanding is that when I'm doing high-side current sensing the big current will go through the sense resistor only and I'm planning to use 5mR or 10mR 5W resistor or 2 of 10mR 5W in parallel and it rarely actually reaches the peak of 20A so I hope I should be fine. I estimate the consumption of the circuit with all digital stuff and a bluetooth transmitter should be no more than 70mA.
            $endgroup$
            – axk
            6 hours ago





            $begingroup$
            My understanding is that when I'm doing high-side current sensing the big current will go through the sense resistor only and I'm planning to use 5mR or 10mR 5W resistor or 2 of 10mR 5W in parallel and it rarely actually reaches the peak of 20A so I hope I should be fine. I estimate the consumption of the circuit with all digital stuff and a bluetooth transmitter should be no more than 70mA.
            $endgroup$
            – axk
            6 hours ago


















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f427315%2fcurrent-sense-amp-op-amp-buffer-adc-measuring-down-to-0-with-single-supply%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Luettelo Yhdysvaltain laivaston lentotukialuksista Lähteet | Navigointivalikko

            Gary (muusikko) Sisällysluettelo Historia | Rockin' High | Lähteet | Aiheesta muualla | NavigointivalikkoInfobox OKTuomas "Gary" Keskinen Ancaran kitaristiksiProjekti Rockin' High