How do I fit a resonance curve? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to guess the correct fitting function to some data?Fitting of exponential data gives me a constant functionCurve Fitting and Multiple ExperimentsPower fit to some experimental dataShould a Gaussian Curve Always Be Drawn Symmetrically?Arrhenius Fit: Linear or exponential form?Reduced chi-squared value for noiseless spectraDamped Harmonic Curve fit and ForceConstant wind drag while falling?Removing zero-counts in exponential decay measurement

How are presidential pardons supposed to be used?

What are the performance impacts of 'functional' Rust?

Problem when applying foreach loop

Is there folklore associating late breastfeeding with low intelligence and/or gullibility?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

How can players take actions together that are impossible otherwise?

Can a zero nonce be safely used with AES-GCM if the key is random and never used again?

Did the new image of black hole confirm the general theory of relativity?

Stars Make Stars

Blender game recording at the wrong time

Statistical model of ligand substitution

What would be Julian Assange's expected punishment, on the current English criminal law?

Strange behaviour of Check

What to do with post with dry rot?

How do I keep my slimes from escaping their pens?

Losing the Initialization Vector in Cipher Block Chaining

Windows 10: How to Lock (not sleep) laptop on lid close?

How do you clear the ApexPages.getMessages() collection in a test?

New Order #5: where Fibonacci and Beatty meet at Wythoff

Do we know why communications with Beresheet and NASA were lost during the attempted landing of the Moon lander?

I'm thinking of a number

Cold is to Refrigerator as warm is to?

What did Darwin mean by 'squib' here?

Was credit for the black hole image misattributed?



How do I fit a resonance curve?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to guess the correct fitting function to some data?Fitting of exponential data gives me a constant functionCurve Fitting and Multiple ExperimentsPower fit to some experimental dataShould a Gaussian Curve Always Be Drawn Symmetrically?Arrhenius Fit: Linear or exponential form?Reduced chi-squared value for noiseless spectraDamped Harmonic Curve fit and ForceConstant wind drag while falling?Removing zero-counts in exponential decay measurement










7












$begingroup$


In an experiment, I collected data points $ (ω,υ(ω))$ that are modeled by the equation:



$$ υ(ω)=fracωCsqrt(ω^2-ω_0^2)^2+γ^2ω^2 ,.$$



How can do I fit the data to the above correlation? And how can I extract $γ$ through this process?










share|cite|improve this question











$endgroup$











  • $begingroup$
    almost looks like the magnitude response of a second-order bandpass filter. other than least-squares fit (or some other $L_p$ metric of error), i dunno how else to get $gamma$. seems to me that the least-squares fit also needs to find $omega_0$ and $C$. but i think $C$ can come out in the wash.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:24











  • $begingroup$
    $C$ can be absorbed into $gamma$.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:28










  • $begingroup$
    You said nothing about how you estimate the errors of your measured points, and what your criterion for a good fit would be. In general, you would want to maximize some likelihood function, in practice (with Gaussian 1D errors on the data points) a least-squares fit may be good enough. Your case probably involves bins ($omega$ being a continuous variable) and the Poisson distribution (few entries in bins far away from $omega_0$), so a more complex Log-Likelihood approach could be called for.
    $endgroup$
    – tobi_s
    Apr 1 at 10:56






  • 3




    $begingroup$
    I strongly disagree that this should be posted on Mathematics, as suggested by the close votes on it. I think such questions are on topic here, but were they not then Cross Validated would be the most obvious choice.
    $endgroup$
    – Kyle Kanos
    Apr 1 at 11:35















7












$begingroup$


In an experiment, I collected data points $ (ω,υ(ω))$ that are modeled by the equation:



$$ υ(ω)=fracωCsqrt(ω^2-ω_0^2)^2+γ^2ω^2 ,.$$



How can do I fit the data to the above correlation? And how can I extract $γ$ through this process?










share|cite|improve this question











$endgroup$











  • $begingroup$
    almost looks like the magnitude response of a second-order bandpass filter. other than least-squares fit (or some other $L_p$ metric of error), i dunno how else to get $gamma$. seems to me that the least-squares fit also needs to find $omega_0$ and $C$. but i think $C$ can come out in the wash.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:24











  • $begingroup$
    $C$ can be absorbed into $gamma$.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:28










  • $begingroup$
    You said nothing about how you estimate the errors of your measured points, and what your criterion for a good fit would be. In general, you would want to maximize some likelihood function, in practice (with Gaussian 1D errors on the data points) a least-squares fit may be good enough. Your case probably involves bins ($omega$ being a continuous variable) and the Poisson distribution (few entries in bins far away from $omega_0$), so a more complex Log-Likelihood approach could be called for.
    $endgroup$
    – tobi_s
    Apr 1 at 10:56






  • 3




    $begingroup$
    I strongly disagree that this should be posted on Mathematics, as suggested by the close votes on it. I think such questions are on topic here, but were they not then Cross Validated would be the most obvious choice.
    $endgroup$
    – Kyle Kanos
    Apr 1 at 11:35













7












7








7


1



$begingroup$


In an experiment, I collected data points $ (ω,υ(ω))$ that are modeled by the equation:



$$ υ(ω)=fracωCsqrt(ω^2-ω_0^2)^2+γ^2ω^2 ,.$$



How can do I fit the data to the above correlation? And how can I extract $γ$ through this process?










share|cite|improve this question











$endgroup$




In an experiment, I collected data points $ (ω,υ(ω))$ that are modeled by the equation:



$$ υ(ω)=fracωCsqrt(ω^2-ω_0^2)^2+γ^2ω^2 ,.$$



How can do I fit the data to the above correlation? And how can I extract $γ$ through this process?







experimental-physics correlation-functions data-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 1 at 9:31









knzhou

47k11127226




47k11127226










asked Mar 31 at 19:47









Andreas MastronikolisAndreas Mastronikolis

916




916











  • $begingroup$
    almost looks like the magnitude response of a second-order bandpass filter. other than least-squares fit (or some other $L_p$ metric of error), i dunno how else to get $gamma$. seems to me that the least-squares fit also needs to find $omega_0$ and $C$. but i think $C$ can come out in the wash.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:24











  • $begingroup$
    $C$ can be absorbed into $gamma$.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:28










  • $begingroup$
    You said nothing about how you estimate the errors of your measured points, and what your criterion for a good fit would be. In general, you would want to maximize some likelihood function, in practice (with Gaussian 1D errors on the data points) a least-squares fit may be good enough. Your case probably involves bins ($omega$ being a continuous variable) and the Poisson distribution (few entries in bins far away from $omega_0$), so a more complex Log-Likelihood approach could be called for.
    $endgroup$
    – tobi_s
    Apr 1 at 10:56






  • 3




    $begingroup$
    I strongly disagree that this should be posted on Mathematics, as suggested by the close votes on it. I think such questions are on topic here, but were they not then Cross Validated would be the most obvious choice.
    $endgroup$
    – Kyle Kanos
    Apr 1 at 11:35
















  • $begingroup$
    almost looks like the magnitude response of a second-order bandpass filter. other than least-squares fit (or some other $L_p$ metric of error), i dunno how else to get $gamma$. seems to me that the least-squares fit also needs to find $omega_0$ and $C$. but i think $C$ can come out in the wash.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:24











  • $begingroup$
    $C$ can be absorbed into $gamma$.
    $endgroup$
    – robert bristow-johnson
    Apr 1 at 7:28










  • $begingroup$
    You said nothing about how you estimate the errors of your measured points, and what your criterion for a good fit would be. In general, you would want to maximize some likelihood function, in practice (with Gaussian 1D errors on the data points) a least-squares fit may be good enough. Your case probably involves bins ($omega$ being a continuous variable) and the Poisson distribution (few entries in bins far away from $omega_0$), so a more complex Log-Likelihood approach could be called for.
    $endgroup$
    – tobi_s
    Apr 1 at 10:56






  • 3




    $begingroup$
    I strongly disagree that this should be posted on Mathematics, as suggested by the close votes on it. I think such questions are on topic here, but were they not then Cross Validated would be the most obvious choice.
    $endgroup$
    – Kyle Kanos
    Apr 1 at 11:35















$begingroup$
almost looks like the magnitude response of a second-order bandpass filter. other than least-squares fit (or some other $L_p$ metric of error), i dunno how else to get $gamma$. seems to me that the least-squares fit also needs to find $omega_0$ and $C$. but i think $C$ can come out in the wash.
$endgroup$
– robert bristow-johnson
Apr 1 at 7:24





$begingroup$
almost looks like the magnitude response of a second-order bandpass filter. other than least-squares fit (or some other $L_p$ metric of error), i dunno how else to get $gamma$. seems to me that the least-squares fit also needs to find $omega_0$ and $C$. but i think $C$ can come out in the wash.
$endgroup$
– robert bristow-johnson
Apr 1 at 7:24













$begingroup$
$C$ can be absorbed into $gamma$.
$endgroup$
– robert bristow-johnson
Apr 1 at 7:28




$begingroup$
$C$ can be absorbed into $gamma$.
$endgroup$
– robert bristow-johnson
Apr 1 at 7:28












$begingroup$
You said nothing about how you estimate the errors of your measured points, and what your criterion for a good fit would be. In general, you would want to maximize some likelihood function, in practice (with Gaussian 1D errors on the data points) a least-squares fit may be good enough. Your case probably involves bins ($omega$ being a continuous variable) and the Poisson distribution (few entries in bins far away from $omega_0$), so a more complex Log-Likelihood approach could be called for.
$endgroup$
– tobi_s
Apr 1 at 10:56




$begingroup$
You said nothing about how you estimate the errors of your measured points, and what your criterion for a good fit would be. In general, you would want to maximize some likelihood function, in practice (with Gaussian 1D errors on the data points) a least-squares fit may be good enough. Your case probably involves bins ($omega$ being a continuous variable) and the Poisson distribution (few entries in bins far away from $omega_0$), so a more complex Log-Likelihood approach could be called for.
$endgroup$
– tobi_s
Apr 1 at 10:56




3




3




$begingroup$
I strongly disagree that this should be posted on Mathematics, as suggested by the close votes on it. I think such questions are on topic here, but were they not then Cross Validated would be the most obvious choice.
$endgroup$
– Kyle Kanos
Apr 1 at 11:35




$begingroup$
I strongly disagree that this should be posted on Mathematics, as suggested by the close votes on it. I think such questions are on topic here, but were they not then Cross Validated would be the most obvious choice.
$endgroup$
– Kyle Kanos
Apr 1 at 11:35










4 Answers
4






active

oldest

votes


















10












$begingroup$

What you want to find is the parameters $theta=(C, omega_0, gamma)$ that minimizes the difference between $nu(omega|theta)$ (the curve given the parameters) and the measured $nu_i$ values.



The most popular method is least mean square fitting, which minimizes the sum of the squares of the differences. One can also do it by formulating the normal equations and solve it as a (potentially big) linear equation system. Another approach is the Gauss-Newton algorithm, a simple iterative method to do it. It is a good exercise to implement the solution oneself, but once you have done it once or twice it is best to rely on some software package.



Note that this kind of fitting works well when you know the functional form (your equation for $nu(omega)$), since you can ensure only that the parameters that matter are included. If you try to fit some general polynomial or function you can get overfitting (some complex curve that fits all the data but has nothing to do with your problem) besides the problem of identifying the parameters you care about.






share|cite|improve this answer









$endgroup$




















    8












    $begingroup$

    Don't try using any general-purpose curve fitting algorithm for this.



    The form of your function looks like a frequency response function, with the two unknown parameters $omega_0$ and $gamma$ - i.e. the resonant frequency, and the damping parameter. The function you specified omits an important feature if this is measured data, namely the relative phase between the "force" driving the oscillation and the response.



    If you didn't measure the phase at each frequency, repeat the experiment, because that is critical information.



    When you have the amplitude and phase data, there are curve fitting techniques devised specifically for this problem of "system identification" in experimental modal analysis. A simple one is the so-called "circle fitting" method. If you make a Nyquist plot of your measured data (i.e. plot imaginary part of the response against the real part), the section of the curve near the resonance is a circle, and you can fit a circle to the measured data and find the parameters from it.



    In practice, a simplistic approach assuming the system only has one resonance often doesn't work well, because the response of a real system near resonance also includes the off-resonance response to all the other vibration modes. If the resonant frequencies are well separated and lightly damped, it is possible to correct for this while fitting "one mode at a time". If this is not the case, you need methods that can identify several resonances simultaneously from one response function.



    Rather than re-invent the wheel, use existing code. The signal processing toolbox in MATLAB would be a good starting point - for example https://uk.mathworks.com/help/signal/ref/modalfit.html






    share|cite|improve this answer











    $endgroup$








    • 7




      $begingroup$
      That is, of course, if the phase information is experimentally accessible. It's measurable in plenty of systems, but there are also many cases where it is either inaccessible or much more expensive to access.
      $endgroup$
      – Emilio Pisanty
      Mar 31 at 22:14










    • $begingroup$
      what is a well-known method for identifying several closely spaced resonances at the same time?
      $endgroup$
      – IamAStudent
      Mar 31 at 22:56






    • 2




      $begingroup$
      What are the advantages of these algorithms with respect to the general-purpose ones? What cost function do they minimize?
      $endgroup$
      – Federico Poloni
      Apr 1 at 13:40



















    6












    $begingroup$

    If we put:



    $$Y = fracomega^2u(omega)^2$$



    and



    $$X = omega^2$$



    the equation becomes:



    $$Y =fracX^2C^2 +frac(gamma^2 - 2 omega_0^2)C^2 X + fracomega_0^4C^2$$



    You can then extract the coefficients using polynomial fitting. To get the least-squares fit right, you have to compute the errors in $Y$ and $X$ for each data point from the measurement errors in $omega$ and $u(omega)$.






    share|cite|improve this answer









    $endgroup$








    • 4




      $begingroup$
      This is a beautiful transformation, but it will also distort the error distributions of the data points, rendering the fit much harder as result. The preferred approach to fitting depends on your measurement errors (or error estimates) and on whether your data is binned. For unbinned data, if the $omega$ values are exact (or if the error is negligible compared to $v(omega)$), and if the errors on $v(omega)$ are drawn from a Gaussian distribution, a (non-linear) least-squares fit to your data points is hard to beat, as it will also be a maximum-likelihood fit.
      $endgroup$
      – tobi_s
      Apr 1 at 10:43


















    0












    $begingroup$

    Are you looking for something like polynomial regression? The general idea is, if you have measured pairs of (x, y(x)) and you are looking for find a fit of the form:



    $$y = alpha_0 + alpha_1 x + alpha_2 x^2 ...$$



    You can write this in matrix form as:



    $$beginbmatrix y_1 \ y_2 \ y_3 \ vdots \ y_n endbmatrix = beginbmatrix 1 & x_1 & x_1^2 & cdots \ 1 & x_2 & x_2^2 & cdots \ 1 & x_3 & x_3^2 & cdots \ vdots & vdots & vdots & vdots \ 1 & x_n &x_n^2 & cdots endbmatrix beginbmatrix alpha_0 \ alpha_1 \ alpha_2 \ vdots \ alpha_m endbmatrix$$



    This can now be solved for your coefficients, $alpha_i$. That being said, and as was hinted at in your comments, I've never actually done this, and have instead used non-linear fitting functions provided by libraries.



    More information on polynomial regression on the wikipedia page.



    Edit: As you say in the comments, this method is only applicable if you can write your function that you wish to fit in polynomial form, which I don't think you can do for your example. In which case you are best off referring to the other answers to this question.






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      The answer is yes if the equation can be reduced to a polynomial one. I don't think it can be though.
      $endgroup$
      – Andreas Mastronikolis
      Mar 31 at 20:28










    • $begingroup$
      Then I think your only choice is to follow the advice as given in Anders Sandberg's answer and use one of the fitting techniques suggested there.
      $endgroup$
      – Anon1759
      Mar 31 at 20:32










    • $begingroup$
      The formula with the Vandermonde matrix is for Linear interpolation, not for linear regeression. Or what am I missing?
      $endgroup$
      – Vladimir F
      Apr 1 at 13:04










    • $begingroup$
      @AndreasMastronikolis You can always connect n+1 points with a Lagrange polynomial of degree n. But I doubt it makes much sense here.
      $endgroup$
      – Vladimir F
      Apr 1 at 13:06










    • $begingroup$
      @VladimirF The Vandermonde formula works also for linear regression. You just need to take the pseudoinverse $V^+ = (V^TV)^-1V^T$ of that (rectangular) matrix rather than its classical inverse, i.e., solve the system in the least-squares sense.
      $endgroup$
      – Federico Poloni
      Apr 1 at 13:37












    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469754%2fhow-do-i-fit-a-resonance-curve%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    What you want to find is the parameters $theta=(C, omega_0, gamma)$ that minimizes the difference between $nu(omega|theta)$ (the curve given the parameters) and the measured $nu_i$ values.



    The most popular method is least mean square fitting, which minimizes the sum of the squares of the differences. One can also do it by formulating the normal equations and solve it as a (potentially big) linear equation system. Another approach is the Gauss-Newton algorithm, a simple iterative method to do it. It is a good exercise to implement the solution oneself, but once you have done it once or twice it is best to rely on some software package.



    Note that this kind of fitting works well when you know the functional form (your equation for $nu(omega)$), since you can ensure only that the parameters that matter are included. If you try to fit some general polynomial or function you can get overfitting (some complex curve that fits all the data but has nothing to do with your problem) besides the problem of identifying the parameters you care about.






    share|cite|improve this answer









    $endgroup$

















      10












      $begingroup$

      What you want to find is the parameters $theta=(C, omega_0, gamma)$ that minimizes the difference between $nu(omega|theta)$ (the curve given the parameters) and the measured $nu_i$ values.



      The most popular method is least mean square fitting, which minimizes the sum of the squares of the differences. One can also do it by formulating the normal equations and solve it as a (potentially big) linear equation system. Another approach is the Gauss-Newton algorithm, a simple iterative method to do it. It is a good exercise to implement the solution oneself, but once you have done it once or twice it is best to rely on some software package.



      Note that this kind of fitting works well when you know the functional form (your equation for $nu(omega)$), since you can ensure only that the parameters that matter are included. If you try to fit some general polynomial or function you can get overfitting (some complex curve that fits all the data but has nothing to do with your problem) besides the problem of identifying the parameters you care about.






      share|cite|improve this answer









      $endgroup$















        10












        10








        10





        $begingroup$

        What you want to find is the parameters $theta=(C, omega_0, gamma)$ that minimizes the difference between $nu(omega|theta)$ (the curve given the parameters) and the measured $nu_i$ values.



        The most popular method is least mean square fitting, which minimizes the sum of the squares of the differences. One can also do it by formulating the normal equations and solve it as a (potentially big) linear equation system. Another approach is the Gauss-Newton algorithm, a simple iterative method to do it. It is a good exercise to implement the solution oneself, but once you have done it once or twice it is best to rely on some software package.



        Note that this kind of fitting works well when you know the functional form (your equation for $nu(omega)$), since you can ensure only that the parameters that matter are included. If you try to fit some general polynomial or function you can get overfitting (some complex curve that fits all the data but has nothing to do with your problem) besides the problem of identifying the parameters you care about.






        share|cite|improve this answer









        $endgroup$



        What you want to find is the parameters $theta=(C, omega_0, gamma)$ that minimizes the difference between $nu(omega|theta)$ (the curve given the parameters) and the measured $nu_i$ values.



        The most popular method is least mean square fitting, which minimizes the sum of the squares of the differences. One can also do it by formulating the normal equations and solve it as a (potentially big) linear equation system. Another approach is the Gauss-Newton algorithm, a simple iterative method to do it. It is a good exercise to implement the solution oneself, but once you have done it once or twice it is best to rely on some software package.



        Note that this kind of fitting works well when you know the functional form (your equation for $nu(omega)$), since you can ensure only that the parameters that matter are included. If you try to fit some general polynomial or function you can get overfitting (some complex curve that fits all the data but has nothing to do with your problem) besides the problem of identifying the parameters you care about.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 31 at 20:28









        Anders SandbergAnders Sandberg

        10.3k21530




        10.3k21530





















            8












            $begingroup$

            Don't try using any general-purpose curve fitting algorithm for this.



            The form of your function looks like a frequency response function, with the two unknown parameters $omega_0$ and $gamma$ - i.e. the resonant frequency, and the damping parameter. The function you specified omits an important feature if this is measured data, namely the relative phase between the "force" driving the oscillation and the response.



            If you didn't measure the phase at each frequency, repeat the experiment, because that is critical information.



            When you have the amplitude and phase data, there are curve fitting techniques devised specifically for this problem of "system identification" in experimental modal analysis. A simple one is the so-called "circle fitting" method. If you make a Nyquist plot of your measured data (i.e. plot imaginary part of the response against the real part), the section of the curve near the resonance is a circle, and you can fit a circle to the measured data and find the parameters from it.



            In practice, a simplistic approach assuming the system only has one resonance often doesn't work well, because the response of a real system near resonance also includes the off-resonance response to all the other vibration modes. If the resonant frequencies are well separated and lightly damped, it is possible to correct for this while fitting "one mode at a time". If this is not the case, you need methods that can identify several resonances simultaneously from one response function.



            Rather than re-invent the wheel, use existing code. The signal processing toolbox in MATLAB would be a good starting point - for example https://uk.mathworks.com/help/signal/ref/modalfit.html






            share|cite|improve this answer











            $endgroup$








            • 7




              $begingroup$
              That is, of course, if the phase information is experimentally accessible. It's measurable in plenty of systems, but there are also many cases where it is either inaccessible or much more expensive to access.
              $endgroup$
              – Emilio Pisanty
              Mar 31 at 22:14










            • $begingroup$
              what is a well-known method for identifying several closely spaced resonances at the same time?
              $endgroup$
              – IamAStudent
              Mar 31 at 22:56






            • 2




              $begingroup$
              What are the advantages of these algorithms with respect to the general-purpose ones? What cost function do they minimize?
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:40
















            8












            $begingroup$

            Don't try using any general-purpose curve fitting algorithm for this.



            The form of your function looks like a frequency response function, with the two unknown parameters $omega_0$ and $gamma$ - i.e. the resonant frequency, and the damping parameter. The function you specified omits an important feature if this is measured data, namely the relative phase between the "force" driving the oscillation and the response.



            If you didn't measure the phase at each frequency, repeat the experiment, because that is critical information.



            When you have the amplitude and phase data, there are curve fitting techniques devised specifically for this problem of "system identification" in experimental modal analysis. A simple one is the so-called "circle fitting" method. If you make a Nyquist plot of your measured data (i.e. plot imaginary part of the response against the real part), the section of the curve near the resonance is a circle, and you can fit a circle to the measured data and find the parameters from it.



            In practice, a simplistic approach assuming the system only has one resonance often doesn't work well, because the response of a real system near resonance also includes the off-resonance response to all the other vibration modes. If the resonant frequencies are well separated and lightly damped, it is possible to correct for this while fitting "one mode at a time". If this is not the case, you need methods that can identify several resonances simultaneously from one response function.



            Rather than re-invent the wheel, use existing code. The signal processing toolbox in MATLAB would be a good starting point - for example https://uk.mathworks.com/help/signal/ref/modalfit.html






            share|cite|improve this answer











            $endgroup$








            • 7




              $begingroup$
              That is, of course, if the phase information is experimentally accessible. It's measurable in plenty of systems, but there are also many cases where it is either inaccessible or much more expensive to access.
              $endgroup$
              – Emilio Pisanty
              Mar 31 at 22:14










            • $begingroup$
              what is a well-known method for identifying several closely spaced resonances at the same time?
              $endgroup$
              – IamAStudent
              Mar 31 at 22:56






            • 2




              $begingroup$
              What are the advantages of these algorithms with respect to the general-purpose ones? What cost function do they minimize?
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:40














            8












            8








            8





            $begingroup$

            Don't try using any general-purpose curve fitting algorithm for this.



            The form of your function looks like a frequency response function, with the two unknown parameters $omega_0$ and $gamma$ - i.e. the resonant frequency, and the damping parameter. The function you specified omits an important feature if this is measured data, namely the relative phase between the "force" driving the oscillation and the response.



            If you didn't measure the phase at each frequency, repeat the experiment, because that is critical information.



            When you have the amplitude and phase data, there are curve fitting techniques devised specifically for this problem of "system identification" in experimental modal analysis. A simple one is the so-called "circle fitting" method. If you make a Nyquist plot of your measured data (i.e. plot imaginary part of the response against the real part), the section of the curve near the resonance is a circle, and you can fit a circle to the measured data and find the parameters from it.



            In practice, a simplistic approach assuming the system only has one resonance often doesn't work well, because the response of a real system near resonance also includes the off-resonance response to all the other vibration modes. If the resonant frequencies are well separated and lightly damped, it is possible to correct for this while fitting "one mode at a time". If this is not the case, you need methods that can identify several resonances simultaneously from one response function.



            Rather than re-invent the wheel, use existing code. The signal processing toolbox in MATLAB would be a good starting point - for example https://uk.mathworks.com/help/signal/ref/modalfit.html






            share|cite|improve this answer











            $endgroup$



            Don't try using any general-purpose curve fitting algorithm for this.



            The form of your function looks like a frequency response function, with the two unknown parameters $omega_0$ and $gamma$ - i.e. the resonant frequency, and the damping parameter. The function you specified omits an important feature if this is measured data, namely the relative phase between the "force" driving the oscillation and the response.



            If you didn't measure the phase at each frequency, repeat the experiment, because that is critical information.



            When you have the amplitude and phase data, there are curve fitting techniques devised specifically for this problem of "system identification" in experimental modal analysis. A simple one is the so-called "circle fitting" method. If you make a Nyquist plot of your measured data (i.e. plot imaginary part of the response against the real part), the section of the curve near the resonance is a circle, and you can fit a circle to the measured data and find the parameters from it.



            In practice, a simplistic approach assuming the system only has one resonance often doesn't work well, because the response of a real system near resonance also includes the off-resonance response to all the other vibration modes. If the resonant frequencies are well separated and lightly damped, it is possible to correct for this while fitting "one mode at a time". If this is not the case, you need methods that can identify several resonances simultaneously from one response function.



            Rather than re-invent the wheel, use existing code. The signal processing toolbox in MATLAB would be a good starting point - for example https://uk.mathworks.com/help/signal/ref/modalfit.html







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Mar 31 at 21:03

























            answered Mar 31 at 20:58









            alephzeroalephzero

            5,66521120




            5,66521120







            • 7




              $begingroup$
              That is, of course, if the phase information is experimentally accessible. It's measurable in plenty of systems, but there are also many cases where it is either inaccessible or much more expensive to access.
              $endgroup$
              – Emilio Pisanty
              Mar 31 at 22:14










            • $begingroup$
              what is a well-known method for identifying several closely spaced resonances at the same time?
              $endgroup$
              – IamAStudent
              Mar 31 at 22:56






            • 2




              $begingroup$
              What are the advantages of these algorithms with respect to the general-purpose ones? What cost function do they minimize?
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:40













            • 7




              $begingroup$
              That is, of course, if the phase information is experimentally accessible. It's measurable in plenty of systems, but there are also many cases where it is either inaccessible or much more expensive to access.
              $endgroup$
              – Emilio Pisanty
              Mar 31 at 22:14










            • $begingroup$
              what is a well-known method for identifying several closely spaced resonances at the same time?
              $endgroup$
              – IamAStudent
              Mar 31 at 22:56






            • 2




              $begingroup$
              What are the advantages of these algorithms with respect to the general-purpose ones? What cost function do they minimize?
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:40








            7




            7




            $begingroup$
            That is, of course, if the phase information is experimentally accessible. It's measurable in plenty of systems, but there are also many cases where it is either inaccessible or much more expensive to access.
            $endgroup$
            – Emilio Pisanty
            Mar 31 at 22:14




            $begingroup$
            That is, of course, if the phase information is experimentally accessible. It's measurable in plenty of systems, but there are also many cases where it is either inaccessible or much more expensive to access.
            $endgroup$
            – Emilio Pisanty
            Mar 31 at 22:14












            $begingroup$
            what is a well-known method for identifying several closely spaced resonances at the same time?
            $endgroup$
            – IamAStudent
            Mar 31 at 22:56




            $begingroup$
            what is a well-known method for identifying several closely spaced resonances at the same time?
            $endgroup$
            – IamAStudent
            Mar 31 at 22:56




            2




            2




            $begingroup$
            What are the advantages of these algorithms with respect to the general-purpose ones? What cost function do they minimize?
            $endgroup$
            – Federico Poloni
            Apr 1 at 13:40





            $begingroup$
            What are the advantages of these algorithms with respect to the general-purpose ones? What cost function do they minimize?
            $endgroup$
            – Federico Poloni
            Apr 1 at 13:40












            6












            $begingroup$

            If we put:



            $$Y = fracomega^2u(omega)^2$$



            and



            $$X = omega^2$$



            the equation becomes:



            $$Y =fracX^2C^2 +frac(gamma^2 - 2 omega_0^2)C^2 X + fracomega_0^4C^2$$



            You can then extract the coefficients using polynomial fitting. To get the least-squares fit right, you have to compute the errors in $Y$ and $X$ for each data point from the measurement errors in $omega$ and $u(omega)$.






            share|cite|improve this answer









            $endgroup$








            • 4




              $begingroup$
              This is a beautiful transformation, but it will also distort the error distributions of the data points, rendering the fit much harder as result. The preferred approach to fitting depends on your measurement errors (or error estimates) and on whether your data is binned. For unbinned data, if the $omega$ values are exact (or if the error is negligible compared to $v(omega)$), and if the errors on $v(omega)$ are drawn from a Gaussian distribution, a (non-linear) least-squares fit to your data points is hard to beat, as it will also be a maximum-likelihood fit.
              $endgroup$
              – tobi_s
              Apr 1 at 10:43















            6












            $begingroup$

            If we put:



            $$Y = fracomega^2u(omega)^2$$



            and



            $$X = omega^2$$



            the equation becomes:



            $$Y =fracX^2C^2 +frac(gamma^2 - 2 omega_0^2)C^2 X + fracomega_0^4C^2$$



            You can then extract the coefficients using polynomial fitting. To get the least-squares fit right, you have to compute the errors in $Y$ and $X$ for each data point from the measurement errors in $omega$ and $u(omega)$.






            share|cite|improve this answer









            $endgroup$








            • 4




              $begingroup$
              This is a beautiful transformation, but it will also distort the error distributions of the data points, rendering the fit much harder as result. The preferred approach to fitting depends on your measurement errors (or error estimates) and on whether your data is binned. For unbinned data, if the $omega$ values are exact (or if the error is negligible compared to $v(omega)$), and if the errors on $v(omega)$ are drawn from a Gaussian distribution, a (non-linear) least-squares fit to your data points is hard to beat, as it will also be a maximum-likelihood fit.
              $endgroup$
              – tobi_s
              Apr 1 at 10:43













            6












            6








            6





            $begingroup$

            If we put:



            $$Y = fracomega^2u(omega)^2$$



            and



            $$X = omega^2$$



            the equation becomes:



            $$Y =fracX^2C^2 +frac(gamma^2 - 2 omega_0^2)C^2 X + fracomega_0^4C^2$$



            You can then extract the coefficients using polynomial fitting. To get the least-squares fit right, you have to compute the errors in $Y$ and $X$ for each data point from the measurement errors in $omega$ and $u(omega)$.






            share|cite|improve this answer









            $endgroup$



            If we put:



            $$Y = fracomega^2u(omega)^2$$



            and



            $$X = omega^2$$



            the equation becomes:



            $$Y =fracX^2C^2 +frac(gamma^2 - 2 omega_0^2)C^2 X + fracomega_0^4C^2$$



            You can then extract the coefficients using polynomial fitting. To get the least-squares fit right, you have to compute the errors in $Y$ and $X$ for each data point from the measurement errors in $omega$ and $u(omega)$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Apr 1 at 0:07









            Count IblisCount Iblis

            8,48411439




            8,48411439







            • 4




              $begingroup$
              This is a beautiful transformation, but it will also distort the error distributions of the data points, rendering the fit much harder as result. The preferred approach to fitting depends on your measurement errors (or error estimates) and on whether your data is binned. For unbinned data, if the $omega$ values are exact (or if the error is negligible compared to $v(omega)$), and if the errors on $v(omega)$ are drawn from a Gaussian distribution, a (non-linear) least-squares fit to your data points is hard to beat, as it will also be a maximum-likelihood fit.
              $endgroup$
              – tobi_s
              Apr 1 at 10:43












            • 4




              $begingroup$
              This is a beautiful transformation, but it will also distort the error distributions of the data points, rendering the fit much harder as result. The preferred approach to fitting depends on your measurement errors (or error estimates) and on whether your data is binned. For unbinned data, if the $omega$ values are exact (or if the error is negligible compared to $v(omega)$), and if the errors on $v(omega)$ are drawn from a Gaussian distribution, a (non-linear) least-squares fit to your data points is hard to beat, as it will also be a maximum-likelihood fit.
              $endgroup$
              – tobi_s
              Apr 1 at 10:43







            4




            4




            $begingroup$
            This is a beautiful transformation, but it will also distort the error distributions of the data points, rendering the fit much harder as result. The preferred approach to fitting depends on your measurement errors (or error estimates) and on whether your data is binned. For unbinned data, if the $omega$ values are exact (or if the error is negligible compared to $v(omega)$), and if the errors on $v(omega)$ are drawn from a Gaussian distribution, a (non-linear) least-squares fit to your data points is hard to beat, as it will also be a maximum-likelihood fit.
            $endgroup$
            – tobi_s
            Apr 1 at 10:43




            $begingroup$
            This is a beautiful transformation, but it will also distort the error distributions of the data points, rendering the fit much harder as result. The preferred approach to fitting depends on your measurement errors (or error estimates) and on whether your data is binned. For unbinned data, if the $omega$ values are exact (or if the error is negligible compared to $v(omega)$), and if the errors on $v(omega)$ are drawn from a Gaussian distribution, a (non-linear) least-squares fit to your data points is hard to beat, as it will also be a maximum-likelihood fit.
            $endgroup$
            – tobi_s
            Apr 1 at 10:43











            0












            $begingroup$

            Are you looking for something like polynomial regression? The general idea is, if you have measured pairs of (x, y(x)) and you are looking for find a fit of the form:



            $$y = alpha_0 + alpha_1 x + alpha_2 x^2 ...$$



            You can write this in matrix form as:



            $$beginbmatrix y_1 \ y_2 \ y_3 \ vdots \ y_n endbmatrix = beginbmatrix 1 & x_1 & x_1^2 & cdots \ 1 & x_2 & x_2^2 & cdots \ 1 & x_3 & x_3^2 & cdots \ vdots & vdots & vdots & vdots \ 1 & x_n &x_n^2 & cdots endbmatrix beginbmatrix alpha_0 \ alpha_1 \ alpha_2 \ vdots \ alpha_m endbmatrix$$



            This can now be solved for your coefficients, $alpha_i$. That being said, and as was hinted at in your comments, I've never actually done this, and have instead used non-linear fitting functions provided by libraries.



            More information on polynomial regression on the wikipedia page.



            Edit: As you say in the comments, this method is only applicable if you can write your function that you wish to fit in polynomial form, which I don't think you can do for your example. In which case you are best off referring to the other answers to this question.






            share|cite|improve this answer











            $endgroup$








            • 2




              $begingroup$
              The answer is yes if the equation can be reduced to a polynomial one. I don't think it can be though.
              $endgroup$
              – Andreas Mastronikolis
              Mar 31 at 20:28










            • $begingroup$
              Then I think your only choice is to follow the advice as given in Anders Sandberg's answer and use one of the fitting techniques suggested there.
              $endgroup$
              – Anon1759
              Mar 31 at 20:32










            • $begingroup$
              The formula with the Vandermonde matrix is for Linear interpolation, not for linear regeression. Or what am I missing?
              $endgroup$
              – Vladimir F
              Apr 1 at 13:04










            • $begingroup$
              @AndreasMastronikolis You can always connect n+1 points with a Lagrange polynomial of degree n. But I doubt it makes much sense here.
              $endgroup$
              – Vladimir F
              Apr 1 at 13:06










            • $begingroup$
              @VladimirF The Vandermonde formula works also for linear regression. You just need to take the pseudoinverse $V^+ = (V^TV)^-1V^T$ of that (rectangular) matrix rather than its classical inverse, i.e., solve the system in the least-squares sense.
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:37
















            0












            $begingroup$

            Are you looking for something like polynomial regression? The general idea is, if you have measured pairs of (x, y(x)) and you are looking for find a fit of the form:



            $$y = alpha_0 + alpha_1 x + alpha_2 x^2 ...$$



            You can write this in matrix form as:



            $$beginbmatrix y_1 \ y_2 \ y_3 \ vdots \ y_n endbmatrix = beginbmatrix 1 & x_1 & x_1^2 & cdots \ 1 & x_2 & x_2^2 & cdots \ 1 & x_3 & x_3^2 & cdots \ vdots & vdots & vdots & vdots \ 1 & x_n &x_n^2 & cdots endbmatrix beginbmatrix alpha_0 \ alpha_1 \ alpha_2 \ vdots \ alpha_m endbmatrix$$



            This can now be solved for your coefficients, $alpha_i$. That being said, and as was hinted at in your comments, I've never actually done this, and have instead used non-linear fitting functions provided by libraries.



            More information on polynomial regression on the wikipedia page.



            Edit: As you say in the comments, this method is only applicable if you can write your function that you wish to fit in polynomial form, which I don't think you can do for your example. In which case you are best off referring to the other answers to this question.






            share|cite|improve this answer











            $endgroup$








            • 2




              $begingroup$
              The answer is yes if the equation can be reduced to a polynomial one. I don't think it can be though.
              $endgroup$
              – Andreas Mastronikolis
              Mar 31 at 20:28










            • $begingroup$
              Then I think your only choice is to follow the advice as given in Anders Sandberg's answer and use one of the fitting techniques suggested there.
              $endgroup$
              – Anon1759
              Mar 31 at 20:32










            • $begingroup$
              The formula with the Vandermonde matrix is for Linear interpolation, not for linear regeression. Or what am I missing?
              $endgroup$
              – Vladimir F
              Apr 1 at 13:04










            • $begingroup$
              @AndreasMastronikolis You can always connect n+1 points with a Lagrange polynomial of degree n. But I doubt it makes much sense here.
              $endgroup$
              – Vladimir F
              Apr 1 at 13:06










            • $begingroup$
              @VladimirF The Vandermonde formula works also for linear regression. You just need to take the pseudoinverse $V^+ = (V^TV)^-1V^T$ of that (rectangular) matrix rather than its classical inverse, i.e., solve the system in the least-squares sense.
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:37














            0












            0








            0





            $begingroup$

            Are you looking for something like polynomial regression? The general idea is, if you have measured pairs of (x, y(x)) and you are looking for find a fit of the form:



            $$y = alpha_0 + alpha_1 x + alpha_2 x^2 ...$$



            You can write this in matrix form as:



            $$beginbmatrix y_1 \ y_2 \ y_3 \ vdots \ y_n endbmatrix = beginbmatrix 1 & x_1 & x_1^2 & cdots \ 1 & x_2 & x_2^2 & cdots \ 1 & x_3 & x_3^2 & cdots \ vdots & vdots & vdots & vdots \ 1 & x_n &x_n^2 & cdots endbmatrix beginbmatrix alpha_0 \ alpha_1 \ alpha_2 \ vdots \ alpha_m endbmatrix$$



            This can now be solved for your coefficients, $alpha_i$. That being said, and as was hinted at in your comments, I've never actually done this, and have instead used non-linear fitting functions provided by libraries.



            More information on polynomial regression on the wikipedia page.



            Edit: As you say in the comments, this method is only applicable if you can write your function that you wish to fit in polynomial form, which I don't think you can do for your example. In which case you are best off referring to the other answers to this question.






            share|cite|improve this answer











            $endgroup$



            Are you looking for something like polynomial regression? The general idea is, if you have measured pairs of (x, y(x)) and you are looking for find a fit of the form:



            $$y = alpha_0 + alpha_1 x + alpha_2 x^2 ...$$



            You can write this in matrix form as:



            $$beginbmatrix y_1 \ y_2 \ y_3 \ vdots \ y_n endbmatrix = beginbmatrix 1 & x_1 & x_1^2 & cdots \ 1 & x_2 & x_2^2 & cdots \ 1 & x_3 & x_3^2 & cdots \ vdots & vdots & vdots & vdots \ 1 & x_n &x_n^2 & cdots endbmatrix beginbmatrix alpha_0 \ alpha_1 \ alpha_2 \ vdots \ alpha_m endbmatrix$$



            This can now be solved for your coefficients, $alpha_i$. That being said, and as was hinted at in your comments, I've never actually done this, and have instead used non-linear fitting functions provided by libraries.



            More information on polynomial regression on the wikipedia page.



            Edit: As you say in the comments, this method is only applicable if you can write your function that you wish to fit in polynomial form, which I don't think you can do for your example. In which case you are best off referring to the other answers to this question.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Apr 1 at 6:52

























            answered Mar 31 at 20:24









            Anon1759Anon1759

            513




            513







            • 2




              $begingroup$
              The answer is yes if the equation can be reduced to a polynomial one. I don't think it can be though.
              $endgroup$
              – Andreas Mastronikolis
              Mar 31 at 20:28










            • $begingroup$
              Then I think your only choice is to follow the advice as given in Anders Sandberg's answer and use one of the fitting techniques suggested there.
              $endgroup$
              – Anon1759
              Mar 31 at 20:32










            • $begingroup$
              The formula with the Vandermonde matrix is for Linear interpolation, not for linear regeression. Or what am I missing?
              $endgroup$
              – Vladimir F
              Apr 1 at 13:04










            • $begingroup$
              @AndreasMastronikolis You can always connect n+1 points with a Lagrange polynomial of degree n. But I doubt it makes much sense here.
              $endgroup$
              – Vladimir F
              Apr 1 at 13:06










            • $begingroup$
              @VladimirF The Vandermonde formula works also for linear regression. You just need to take the pseudoinverse $V^+ = (V^TV)^-1V^T$ of that (rectangular) matrix rather than its classical inverse, i.e., solve the system in the least-squares sense.
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:37













            • 2




              $begingroup$
              The answer is yes if the equation can be reduced to a polynomial one. I don't think it can be though.
              $endgroup$
              – Andreas Mastronikolis
              Mar 31 at 20:28










            • $begingroup$
              Then I think your only choice is to follow the advice as given in Anders Sandberg's answer and use one of the fitting techniques suggested there.
              $endgroup$
              – Anon1759
              Mar 31 at 20:32










            • $begingroup$
              The formula with the Vandermonde matrix is for Linear interpolation, not for linear regeression. Or what am I missing?
              $endgroup$
              – Vladimir F
              Apr 1 at 13:04










            • $begingroup$
              @AndreasMastronikolis You can always connect n+1 points with a Lagrange polynomial of degree n. But I doubt it makes much sense here.
              $endgroup$
              – Vladimir F
              Apr 1 at 13:06










            • $begingroup$
              @VladimirF The Vandermonde formula works also for linear regression. You just need to take the pseudoinverse $V^+ = (V^TV)^-1V^T$ of that (rectangular) matrix rather than its classical inverse, i.e., solve the system in the least-squares sense.
              $endgroup$
              – Federico Poloni
              Apr 1 at 13:37








            2




            2




            $begingroup$
            The answer is yes if the equation can be reduced to a polynomial one. I don't think it can be though.
            $endgroup$
            – Andreas Mastronikolis
            Mar 31 at 20:28




            $begingroup$
            The answer is yes if the equation can be reduced to a polynomial one. I don't think it can be though.
            $endgroup$
            – Andreas Mastronikolis
            Mar 31 at 20:28












            $begingroup$
            Then I think your only choice is to follow the advice as given in Anders Sandberg's answer and use one of the fitting techniques suggested there.
            $endgroup$
            – Anon1759
            Mar 31 at 20:32




            $begingroup$
            Then I think your only choice is to follow the advice as given in Anders Sandberg's answer and use one of the fitting techniques suggested there.
            $endgroup$
            – Anon1759
            Mar 31 at 20:32












            $begingroup$
            The formula with the Vandermonde matrix is for Linear interpolation, not for linear regeression. Or what am I missing?
            $endgroup$
            – Vladimir F
            Apr 1 at 13:04




            $begingroup$
            The formula with the Vandermonde matrix is for Linear interpolation, not for linear regeression. Or what am I missing?
            $endgroup$
            – Vladimir F
            Apr 1 at 13:04












            $begingroup$
            @AndreasMastronikolis You can always connect n+1 points with a Lagrange polynomial of degree n. But I doubt it makes much sense here.
            $endgroup$
            – Vladimir F
            Apr 1 at 13:06




            $begingroup$
            @AndreasMastronikolis You can always connect n+1 points with a Lagrange polynomial of degree n. But I doubt it makes much sense here.
            $endgroup$
            – Vladimir F
            Apr 1 at 13:06












            $begingroup$
            @VladimirF The Vandermonde formula works also for linear regression. You just need to take the pseudoinverse $V^+ = (V^TV)^-1V^T$ of that (rectangular) matrix rather than its classical inverse, i.e., solve the system in the least-squares sense.
            $endgroup$
            – Federico Poloni
            Apr 1 at 13:37





            $begingroup$
            @VladimirF The Vandermonde formula works also for linear regression. You just need to take the pseudoinverse $V^+ = (V^TV)^-1V^T$ of that (rectangular) matrix rather than its classical inverse, i.e., solve the system in the least-squares sense.
            $endgroup$
            – Federico Poloni
            Apr 1 at 13:37


















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469754%2fhow-do-i-fit-a-resonance-curve%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

            Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

            Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?