How does $ fracx^2 + y^22 geq |xy|$ come from $ fracx + y2 geq sqrtxy$?How is this form of the Chernoff bound derived from the other?Show that $fracxyz + fracxzy + fracyzx geq x+y+z $ by considering homogeneityHow to get $sqrt k + frac1sqrtk+1$ in the form $fracsqrtk^2 + 1sqrtk+1$?Why does $(x+3)/(x-4) geq 0$ not include 4 in the interval result?Prove $fraca+bsqrtc+fraca+csqrtb+ fracb+csqrta geq 2(sqrta + sqrtb +sqrtc)$Prove $fracsqrta+ sqrtb 2 leq sqrt fraca+b2 $Nesbitt's Inequality $fracab+c+fracbc+a+fracca+bgeqfrac32$Prove when $abc=1$: $ fraca2+bc + fracb2+ca+fracc2+ab geq 1$Where does this trignometric substition come from?Show that $fraca+b2 geq sqrtab geq frac2aba+b$
Bullying boss launched a smear campaign and made me unemployable
Personal Teleportation: From Rags to Riches
Is it a bad idea to plug the other end of ESD strap to wall ground?
How dangerous is XSS
How badly should I try to prevent a user from XSSing themselves?
Could the museum Saturn V's be refitted for one more flight?
Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?
How to show a landlord what we have in savings?
Processor speed limited at 0.4 Ghz
Can someone clarify Hamming's notion of important problems in relation to modern academia?
What is a Samsaran Word™?
Avoiding the "not like other girls" trope?
Is it possible to create a QR code using text?
Venezuelan girlfriend wants to travel the USA to be with me. What is the process?
How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)
meaning of 腰を落としている
Expand and Contract
Should I tell management that I intend to leave due to bad software development practices?
How to properly check if the given string is empty in a POSIX shell script?
Array of objects return object when condition matched
Finitely generated matrix groups whose eigenvalues are all algebraic
How can saying a song's name be a copyright violation?
files created then deleted at every second in tmp directory
How to prevent "they're falling in love" trope
How does $ fracx^2 + y^22 geq |xy|$ come from $ fracx + y2 geq sqrtxy$?
How is this form of the Chernoff bound derived from the other?Show that $fracxyz + fracxzy + fracyzx geq x+y+z $ by considering homogeneityHow to get $sqrt k + frac1sqrtk+1$ in the form $fracsqrtk^2 + 1sqrtk+1$?Why does $(x+3)/(x-4) geq 0$ not include 4 in the interval result?Prove $fraca+bsqrtc+fraca+csqrtb+ fracb+csqrta geq 2(sqrta + sqrtb +sqrtc)$Prove $fracsqrta+ sqrtb 2 leq sqrt fraca+b2 $Nesbitt's Inequality $fracab+c+fracbc+a+fracca+bgeqfrac32$Prove when $abc=1$: $ fraca2+bc + fracb2+ca+fracc2+ab geq 1$Where does this trignometric substition come from?Show that $fraca+b2 geq sqrtab geq frac2aba+b$
$begingroup$
I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?
calculus inequality
$endgroup$
add a comment |
$begingroup$
I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?
calculus inequality
$endgroup$
add a comment |
$begingroup$
I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?
calculus inequality
$endgroup$
I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?
calculus inequality
calculus inequality
edited Mar 28 at 8:15
YuiTo Cheng
2,1863937
2,1863937
asked Mar 27 at 23:43
hopefullyhopefully
315215
315215
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
$$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
which is the second inequality (modulo capitalization).
$endgroup$
add a comment |
$begingroup$
The AM-GM inequality for $n$ non-negative values is
$frac1n(sum_k=1^n x_k)
ge (prod_k=1^n x_k)^1/n
$.
This can be rewritten in two ways.
First,
by simple algebra,
$(sum_k=1^n x_i)^n
ge n^n(prod_k=1^n x_k)
$.
Second,
letting $x_k = y_k^n$,
this becomes
$frac1n(sum_k=1^n y_k^n)
ge prod_k=1^n y_k
$.
It is useful to recognize
these disguises.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165273%2fhow-does-fracx2-y22-geq-xy-come-from-fracx-y2-geq-sqrt%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
$$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
which is the second inequality (modulo capitalization).
$endgroup$
add a comment |
$begingroup$
If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
$$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
which is the second inequality (modulo capitalization).
$endgroup$
add a comment |
$begingroup$
If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
$$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
which is the second inequality (modulo capitalization).
$endgroup$
If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
$$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
which is the second inequality (modulo capitalization).
answered Mar 27 at 23:46
jgonjgon
16.4k32143
16.4k32143
add a comment |
add a comment |
$begingroup$
The AM-GM inequality for $n$ non-negative values is
$frac1n(sum_k=1^n x_k)
ge (prod_k=1^n x_k)^1/n
$.
This can be rewritten in two ways.
First,
by simple algebra,
$(sum_k=1^n x_i)^n
ge n^n(prod_k=1^n x_k)
$.
Second,
letting $x_k = y_k^n$,
this becomes
$frac1n(sum_k=1^n y_k^n)
ge prod_k=1^n y_k
$.
It is useful to recognize
these disguises.
$endgroup$
add a comment |
$begingroup$
The AM-GM inequality for $n$ non-negative values is
$frac1n(sum_k=1^n x_k)
ge (prod_k=1^n x_k)^1/n
$.
This can be rewritten in two ways.
First,
by simple algebra,
$(sum_k=1^n x_i)^n
ge n^n(prod_k=1^n x_k)
$.
Second,
letting $x_k = y_k^n$,
this becomes
$frac1n(sum_k=1^n y_k^n)
ge prod_k=1^n y_k
$.
It is useful to recognize
these disguises.
$endgroup$
add a comment |
$begingroup$
The AM-GM inequality for $n$ non-negative values is
$frac1n(sum_k=1^n x_k)
ge (prod_k=1^n x_k)^1/n
$.
This can be rewritten in two ways.
First,
by simple algebra,
$(sum_k=1^n x_i)^n
ge n^n(prod_k=1^n x_k)
$.
Second,
letting $x_k = y_k^n$,
this becomes
$frac1n(sum_k=1^n y_k^n)
ge prod_k=1^n y_k
$.
It is useful to recognize
these disguises.
$endgroup$
The AM-GM inequality for $n$ non-negative values is
$frac1n(sum_k=1^n x_k)
ge (prod_k=1^n x_k)^1/n
$.
This can be rewritten in two ways.
First,
by simple algebra,
$(sum_k=1^n x_i)^n
ge n^n(prod_k=1^n x_k)
$.
Second,
letting $x_k = y_k^n$,
this becomes
$frac1n(sum_k=1^n y_k^n)
ge prod_k=1^n y_k
$.
It is useful to recognize
these disguises.
answered Mar 28 at 0:07
marty cohenmarty cohen
74.9k549130
74.9k549130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165273%2fhow-does-fracx2-y22-geq-xy-come-from-fracx-y2-geq-sqrt%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown