How does $ fracx^2 + y^22 geq |xy|$ come from $ fracx + y2 geq sqrtxy$?How is this form of the Chernoff bound derived from the other?Show that $fracxyz + fracxzy + fracyzx geq x+y+z $ by considering homogeneityHow to get $sqrt k + frac1sqrtk+1$ in the form $fracsqrtk^2 + 1sqrtk+1$?Why does $(x+3)/(x-4) geq 0$ not include 4 in the interval result?Prove $fraca+bsqrtc+fraca+csqrtb+ fracb+csqrta geq 2(sqrta + sqrtb +sqrtc)$Prove $fracsqrta+ sqrtb 2 leq sqrt fraca+b2 $Nesbitt's Inequality $fracab+c+fracbc+a+fracca+bgeqfrac32$Prove when $abc=1$: $ fraca2+bc + fracb2+ca+fracc2+ab geq 1$Where does this trignometric substition come from?Show that $fraca+b2 geq sqrtab geq frac2aba+b$

Bullying boss launched a smear campaign and made me unemployable

Personal Teleportation: From Rags to Riches

Is it a bad idea to plug the other end of ESD strap to wall ground?

How dangerous is XSS

How badly should I try to prevent a user from XSSing themselves?

Could the museum Saturn V's be refitted for one more flight?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

How to show a landlord what we have in savings?

Processor speed limited at 0.4 Ghz

Can someone clarify Hamming's notion of important problems in relation to modern academia?

What is a Samsaran Word™?

Avoiding the "not like other girls" trope?

Is it possible to create a QR code using text?

Venezuelan girlfriend wants to travel the USA to be with me. What is the process?

How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)

meaning of 腰を落としている

Expand and Contract

Should I tell management that I intend to leave due to bad software development practices?

How to properly check if the given string is empty in a POSIX shell script?

Array of objects return object when condition matched

Finitely generated matrix groups whose eigenvalues are all algebraic

How can saying a song's name be a copyright violation?

files created then deleted at every second in tmp directory

How to prevent "they're falling in love" trope



How does $ fracx^2 + y^22 geq |xy|$ come from $ fracx + y2 geq sqrtxy$?


How is this form of the Chernoff bound derived from the other?Show that $fracxyz + fracxzy + fracyzx geq x+y+z $ by considering homogeneityHow to get $sqrt k + frac1sqrtk+1$ in the form $fracsqrtk^2 + 1sqrtk+1$?Why does $(x+3)/(x-4) geq 0$ not include 4 in the interval result?Prove $fraca+bsqrtc+fraca+csqrtb+ fracb+csqrta geq 2(sqrta + sqrtb +sqrtc)$Prove $fracsqrta+ sqrtb 2 leq sqrt fraca+b2 $Nesbitt's Inequality $fracab+c+fracbc+a+fracca+bgeqfrac32$Prove when $abc=1$: $ fraca2+bc + fracb2+ca+fracc2+ab geq 1$Where does this trignometric substition come from?Show that $fraca+b2 geq sqrtab geq frac2aba+b$













2












$begingroup$


I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?










    share|cite|improve this question











    $endgroup$














      2












      2








      2


      1



      $begingroup$


      I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?










      share|cite|improve this question











      $endgroup$




      I know that the AM-GM inequality takes the form $$ fracx + y2 geq sqrtxy,$$ but I read in a book another form which is $$ fracx^2 + y^22 geq |xy|,$$ but I am wondering how the second comes from the first? could anyone explain this for me, please?







      calculus inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 28 at 8:15









      YuiTo Cheng

      2,1863937




      2,1863937










      asked Mar 27 at 23:43









      hopefullyhopefully

      315215




      315215




















          2 Answers
          2






          active

          oldest

          votes


















          8












          $begingroup$

          If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
          $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
          which is the second inequality (modulo capitalization).






          share|cite|improve this answer









          $endgroup$




















            5












            $begingroup$

            The AM-GM inequality for $n$ non-negative values is



            $frac1n(sum_k=1^n x_k)
            ge (prod_k=1^n x_k)^1/n
            $
            .



            This can be rewritten in two ways.



            First,
            by simple algebra,



            $(sum_k=1^n x_i)^n
            ge n^n(prod_k=1^n x_k)
            $
            .



            Second,
            letting $x_k = y_k^n$,
            this becomes



            $frac1n(sum_k=1^n y_k^n)
            ge prod_k=1^n y_k
            $
            .



            It is useful to recognize
            these disguises.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165273%2fhow-does-fracx2-y22-geq-xy-come-from-fracx-y2-geq-sqrt%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              8












              $begingroup$

              If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
              $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
              which is the second inequality (modulo capitalization).






              share|cite|improve this answer









              $endgroup$

















                8












                $begingroup$

                If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
                $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
                which is the second inequality (modulo capitalization).






                share|cite|improve this answer









                $endgroup$















                  8












                  8








                  8





                  $begingroup$

                  If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
                  $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
                  which is the second inequality (modulo capitalization).






                  share|cite|improve this answer









                  $endgroup$



                  If you plug $x=X^2$, $y=Y^2$ into the first inequality you get
                  $$fracX^2+Y^22 ge sqrtX^2Y^2 = sqrt(XY)^2=|XY|,$$
                  which is the second inequality (modulo capitalization).







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 27 at 23:46









                  jgonjgon

                  16.4k32143




                  16.4k32143





















                      5












                      $begingroup$

                      The AM-GM inequality for $n$ non-negative values is



                      $frac1n(sum_k=1^n x_k)
                      ge (prod_k=1^n x_k)^1/n
                      $
                      .



                      This can be rewritten in two ways.



                      First,
                      by simple algebra,



                      $(sum_k=1^n x_i)^n
                      ge n^n(prod_k=1^n x_k)
                      $
                      .



                      Second,
                      letting $x_k = y_k^n$,
                      this becomes



                      $frac1n(sum_k=1^n y_k^n)
                      ge prod_k=1^n y_k
                      $
                      .



                      It is useful to recognize
                      these disguises.






                      share|cite|improve this answer









                      $endgroup$

















                        5












                        $begingroup$

                        The AM-GM inequality for $n$ non-negative values is



                        $frac1n(sum_k=1^n x_k)
                        ge (prod_k=1^n x_k)^1/n
                        $
                        .



                        This can be rewritten in two ways.



                        First,
                        by simple algebra,



                        $(sum_k=1^n x_i)^n
                        ge n^n(prod_k=1^n x_k)
                        $
                        .



                        Second,
                        letting $x_k = y_k^n$,
                        this becomes



                        $frac1n(sum_k=1^n y_k^n)
                        ge prod_k=1^n y_k
                        $
                        .



                        It is useful to recognize
                        these disguises.






                        share|cite|improve this answer









                        $endgroup$















                          5












                          5








                          5





                          $begingroup$

                          The AM-GM inequality for $n$ non-negative values is



                          $frac1n(sum_k=1^n x_k)
                          ge (prod_k=1^n x_k)^1/n
                          $
                          .



                          This can be rewritten in two ways.



                          First,
                          by simple algebra,



                          $(sum_k=1^n x_i)^n
                          ge n^n(prod_k=1^n x_k)
                          $
                          .



                          Second,
                          letting $x_k = y_k^n$,
                          this becomes



                          $frac1n(sum_k=1^n y_k^n)
                          ge prod_k=1^n y_k
                          $
                          .



                          It is useful to recognize
                          these disguises.






                          share|cite|improve this answer









                          $endgroup$



                          The AM-GM inequality for $n$ non-negative values is



                          $frac1n(sum_k=1^n x_k)
                          ge (prod_k=1^n x_k)^1/n
                          $
                          .



                          This can be rewritten in two ways.



                          First,
                          by simple algebra,



                          $(sum_k=1^n x_i)^n
                          ge n^n(prod_k=1^n x_k)
                          $
                          .



                          Second,
                          letting $x_k = y_k^n$,
                          this becomes



                          $frac1n(sum_k=1^n y_k^n)
                          ge prod_k=1^n y_k
                          $
                          .



                          It is useful to recognize
                          these disguises.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Mar 28 at 0:07









                          marty cohenmarty cohen

                          74.9k549130




                          74.9k549130



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165273%2fhow-does-fracx2-y22-geq-xy-come-from-fracx-y2-geq-sqrt%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                              Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                              Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?