Question relative to pads for capacitors - high frequency Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraHigh frequency signal switchSimple question on high bandwidth Opamp reproducing low frequency signalsHigh Frequency, High Power AmplificationSelf resonance frequency for MLCC capacitorAternative diode classes for high frequency(10GHz) applicationsHigh Frequency Start Arc Generator For Pulse Arc Welderhigh frequency transformer basicsHigh Frequency Capacitors in Differential AmplifierHigh frequency response of capacitorsNeed a technique to rectify high voltage high frequency

Why does the Cisco show run command not show the full version, while the show version command does?

Where did Arya get these scars?

/bin/ls sorts differently than just ls

My admission is revoked after accepting the admission offer

When I export an AI 300x60 art board it saves with bigger dimensions

What *exactly* is electrical current, voltage, and resistance?

Putting Ant-Man on house arrest

Suing a Police Officer Instead of the Police Department

What was Apollo 13's "Little Jolt" after MECO?

Can I criticise the more senior developers around me for not writing clean code?

What is the term for a person whose job is to place products on shelves in stores?

Are `mathfont` and `mathspec` intended for same purpose?

Married in secret, can marital status in passport be changed at a later date?

What is the numbering system used for the DSN dishes?

How would it unbalance gameplay to rule that Weapon Master allows for picking a fighting style?

Israeli soda type drink

What is the ongoing value of the Kanban board to the developers as opposed to management

Are there existing rules/lore for MTG planeswalkers?

What were wait-states, and why was it only an issue for PCs?

"Working on a knee"

Could a cockatrice have parasitic embryos?

How do I deal with an erroneously large refund?

Mechanism of the formation of peracetic acid

Is it OK if I do not take the receipt in Germany?



Question relative to pads for capacitors - high frequency



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraHigh frequency signal switchSimple question on high bandwidth Opamp reproducing low frequency signalsHigh Frequency, High Power AmplificationSelf resonance frequency for MLCC capacitorAternative diode classes for high frequency(10GHz) applicationsHigh Frequency Start Arc Generator For Pulse Arc Welderhigh frequency transformer basicsHigh Frequency Capacitors in Differential AmplifierHigh frequency response of capacitorsNeed a technique to rectify high voltage high frequency



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


In the article
Compact sub nano second pulse generator using avalanche transistors, I read P. 874




Further, we used pads on a doublesided
0.062” FR-4 epoxy glass laminate pc-board for
capacitors C6-C8 instead of soldering on 3 ATC capacitors.
Since the pc-board dielectric has a low series inductance,
this improves the pulse rise time significantly. Previous
attempts to use pc-board capacitances for low values of
capacitors [5] have used complex construction techniques
such as dielectric wedges to accommodate the avalanche
transistors and their bias networks with the pc-board
capacitors. However, our design simply lays out the
capacitors as pc-board traces (Figure 3) that easily connect
to the transistors.




I would like to understand what are these "pads" and how this improve the rise time significantly ?










share|improve this question









$endgroup$







  • 2




    $begingroup$
    the "pads" indicates "solder pads", the rectangular regions on a PCB where the surface-mount components are installed. The pads are connected with narrow "traces". Pads likely would be large rectangular regions of copper foil.
    $endgroup$
    – analogsystemsrf
    Apr 5 at 10:13

















4












$begingroup$


In the article
Compact sub nano second pulse generator using avalanche transistors, I read P. 874




Further, we used pads on a doublesided
0.062” FR-4 epoxy glass laminate pc-board for
capacitors C6-C8 instead of soldering on 3 ATC capacitors.
Since the pc-board dielectric has a low series inductance,
this improves the pulse rise time significantly. Previous
attempts to use pc-board capacitances for low values of
capacitors [5] have used complex construction techniques
such as dielectric wedges to accommodate the avalanche
transistors and their bias networks with the pc-board
capacitors. However, our design simply lays out the
capacitors as pc-board traces (Figure 3) that easily connect
to the transistors.




I would like to understand what are these "pads" and how this improve the rise time significantly ?










share|improve this question









$endgroup$







  • 2




    $begingroup$
    the "pads" indicates "solder pads", the rectangular regions on a PCB where the surface-mount components are installed. The pads are connected with narrow "traces". Pads likely would be large rectangular regions of copper foil.
    $endgroup$
    – analogsystemsrf
    Apr 5 at 10:13













4












4








4





$begingroup$


In the article
Compact sub nano second pulse generator using avalanche transistors, I read P. 874




Further, we used pads on a doublesided
0.062” FR-4 epoxy glass laminate pc-board for
capacitors C6-C8 instead of soldering on 3 ATC capacitors.
Since the pc-board dielectric has a low series inductance,
this improves the pulse rise time significantly. Previous
attempts to use pc-board capacitances for low values of
capacitors [5] have used complex construction techniques
such as dielectric wedges to accommodate the avalanche
transistors and their bias networks with the pc-board
capacitors. However, our design simply lays out the
capacitors as pc-board traces (Figure 3) that easily connect
to the transistors.




I would like to understand what are these "pads" and how this improve the rise time significantly ?










share|improve this question









$endgroup$




In the article
Compact sub nano second pulse generator using avalanche transistors, I read P. 874




Further, we used pads on a doublesided
0.062” FR-4 epoxy glass laminate pc-board for
capacitors C6-C8 instead of soldering on 3 ATC capacitors.
Since the pc-board dielectric has a low series inductance,
this improves the pulse rise time significantly. Previous
attempts to use pc-board capacitances for low values of
capacitors [5] have used complex construction techniques
such as dielectric wedges to accommodate the avalanche
transistors and their bias networks with the pc-board
capacitors. However, our design simply lays out the
capacitors as pc-board traces (Figure 3) that easily connect
to the transistors.




I would like to understand what are these "pads" and how this improve the rise time significantly ?







capacitor pulse high-frequency high-speed pad






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Apr 5 at 9:58









MikeTeXMikeTeX

715416




715416







  • 2




    $begingroup$
    the "pads" indicates "solder pads", the rectangular regions on a PCB where the surface-mount components are installed. The pads are connected with narrow "traces". Pads likely would be large rectangular regions of copper foil.
    $endgroup$
    – analogsystemsrf
    Apr 5 at 10:13












  • 2




    $begingroup$
    the "pads" indicates "solder pads", the rectangular regions on a PCB where the surface-mount components are installed. The pads are connected with narrow "traces". Pads likely would be large rectangular regions of copper foil.
    $endgroup$
    – analogsystemsrf
    Apr 5 at 10:13







2




2




$begingroup$
the "pads" indicates "solder pads", the rectangular regions on a PCB where the surface-mount components are installed. The pads are connected with narrow "traces". Pads likely would be large rectangular regions of copper foil.
$endgroup$
– analogsystemsrf
Apr 5 at 10:13




$begingroup$
the "pads" indicates "solder pads", the rectangular regions on a PCB where the surface-mount components are installed. The pads are connected with narrow "traces". Pads likely would be large rectangular regions of copper foil.
$endgroup$
– analogsystemsrf
Apr 5 at 10:13










2 Answers
2






active

oldest

votes


















6












$begingroup$

I hope you know that a capacitor basically consists of two electrically conductive plates which are close together but do not touch.



There can also be a dielectric (non conductive!) material in between. That could be FR-4 epoxy glass PCB material, like mentioned in the article.



enter image description here



We can then use the copper on the PCB to make the conductive plates.



They call that plate a "pad" which is a common name for a small (square) area on a PCB.



So those "pads" are just the plates of the capacitors they are making themselves.



This results in "better" capacitors than "normal" capacitors like:



enter image description here



In the situation described in the article, they only need very small value capacitors (the largest is 120 pF) so then PCB capacitors are an option, their size would not be very large.



Due to the nice dielectric properties of the FR-4 material, the PCB capacitors have even better performance than "normal" capacitors, like a lower ESR (Equivalent Series Resistance). That means less losses and better transient behavior.






share|improve this answer









$endgroup$




















    5












    $begingroup$

    A 'pad' on a board is simply an area of copper.



    In very high frequency work, it's often used for capacitors to ground, with values lower than 1pF. For any given dielectric and thickness, a certain area of pad will give you a certain capacitance. There are calculators available to estimate capacitance from geometry.



    The great advantage of such a capacitor to ground is that it does not have the fraction of nano-Henry lead inductance that packaged devices have.






    share|improve this answer









    $endgroup$













      Your Answer






      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("schematics", function ()
      StackExchange.schematics.init();
      );
      , "cicuitlab");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "135"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f430877%2fquestion-relative-to-pads-for-capacitors-high-frequency%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      I hope you know that a capacitor basically consists of two electrically conductive plates which are close together but do not touch.



      There can also be a dielectric (non conductive!) material in between. That could be FR-4 epoxy glass PCB material, like mentioned in the article.



      enter image description here



      We can then use the copper on the PCB to make the conductive plates.



      They call that plate a "pad" which is a common name for a small (square) area on a PCB.



      So those "pads" are just the plates of the capacitors they are making themselves.



      This results in "better" capacitors than "normal" capacitors like:



      enter image description here



      In the situation described in the article, they only need very small value capacitors (the largest is 120 pF) so then PCB capacitors are an option, their size would not be very large.



      Due to the nice dielectric properties of the FR-4 material, the PCB capacitors have even better performance than "normal" capacitors, like a lower ESR (Equivalent Series Resistance). That means less losses and better transient behavior.






      share|improve this answer









      $endgroup$

















        6












        $begingroup$

        I hope you know that a capacitor basically consists of two electrically conductive plates which are close together but do not touch.



        There can also be a dielectric (non conductive!) material in between. That could be FR-4 epoxy glass PCB material, like mentioned in the article.



        enter image description here



        We can then use the copper on the PCB to make the conductive plates.



        They call that plate a "pad" which is a common name for a small (square) area on a PCB.



        So those "pads" are just the plates of the capacitors they are making themselves.



        This results in "better" capacitors than "normal" capacitors like:



        enter image description here



        In the situation described in the article, they only need very small value capacitors (the largest is 120 pF) so then PCB capacitors are an option, their size would not be very large.



        Due to the nice dielectric properties of the FR-4 material, the PCB capacitors have even better performance than "normal" capacitors, like a lower ESR (Equivalent Series Resistance). That means less losses and better transient behavior.






        share|improve this answer









        $endgroup$















          6












          6








          6





          $begingroup$

          I hope you know that a capacitor basically consists of two electrically conductive plates which are close together but do not touch.



          There can also be a dielectric (non conductive!) material in between. That could be FR-4 epoxy glass PCB material, like mentioned in the article.



          enter image description here



          We can then use the copper on the PCB to make the conductive plates.



          They call that plate a "pad" which is a common name for a small (square) area on a PCB.



          So those "pads" are just the plates of the capacitors they are making themselves.



          This results in "better" capacitors than "normal" capacitors like:



          enter image description here



          In the situation described in the article, they only need very small value capacitors (the largest is 120 pF) so then PCB capacitors are an option, their size would not be very large.



          Due to the nice dielectric properties of the FR-4 material, the PCB capacitors have even better performance than "normal" capacitors, like a lower ESR (Equivalent Series Resistance). That means less losses and better transient behavior.






          share|improve this answer









          $endgroup$



          I hope you know that a capacitor basically consists of two electrically conductive plates which are close together but do not touch.



          There can also be a dielectric (non conductive!) material in between. That could be FR-4 epoxy glass PCB material, like mentioned in the article.



          enter image description here



          We can then use the copper on the PCB to make the conductive plates.



          They call that plate a "pad" which is a common name for a small (square) area on a PCB.



          So those "pads" are just the plates of the capacitors they are making themselves.



          This results in "better" capacitors than "normal" capacitors like:



          enter image description here



          In the situation described in the article, they only need very small value capacitors (the largest is 120 pF) so then PCB capacitors are an option, their size would not be very large.



          Due to the nice dielectric properties of the FR-4 material, the PCB capacitors have even better performance than "normal" capacitors, like a lower ESR (Equivalent Series Resistance). That means less losses and better transient behavior.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Apr 5 at 10:16









          BimpelrekkieBimpelrekkie

          51.8k246115




          51.8k246115























              5












              $begingroup$

              A 'pad' on a board is simply an area of copper.



              In very high frequency work, it's often used for capacitors to ground, with values lower than 1pF. For any given dielectric and thickness, a certain area of pad will give you a certain capacitance. There are calculators available to estimate capacitance from geometry.



              The great advantage of such a capacitor to ground is that it does not have the fraction of nano-Henry lead inductance that packaged devices have.






              share|improve this answer









              $endgroup$

















                5












                $begingroup$

                A 'pad' on a board is simply an area of copper.



                In very high frequency work, it's often used for capacitors to ground, with values lower than 1pF. For any given dielectric and thickness, a certain area of pad will give you a certain capacitance. There are calculators available to estimate capacitance from geometry.



                The great advantage of such a capacitor to ground is that it does not have the fraction of nano-Henry lead inductance that packaged devices have.






                share|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  A 'pad' on a board is simply an area of copper.



                  In very high frequency work, it's often used for capacitors to ground, with values lower than 1pF. For any given dielectric and thickness, a certain area of pad will give you a certain capacitance. There are calculators available to estimate capacitance from geometry.



                  The great advantage of such a capacitor to ground is that it does not have the fraction of nano-Henry lead inductance that packaged devices have.






                  share|improve this answer









                  $endgroup$



                  A 'pad' on a board is simply an area of copper.



                  In very high frequency work, it's often used for capacitors to ground, with values lower than 1pF. For any given dielectric and thickness, a certain area of pad will give you a certain capacitance. There are calculators available to estimate capacitance from geometry.



                  The great advantage of such a capacitor to ground is that it does not have the fraction of nano-Henry lead inductance that packaged devices have.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Apr 5 at 10:13









                  Neil_UKNeil_UK

                  79.3k285182




                  79.3k285182



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f430877%2fquestion-relative-to-pads-for-capacitors-high-frequency%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

                      Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

                      Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?