Any workaround to manipulate recurrent CNN model on sentence classification?Implementing the Dependency Sensitive CNN (DSCNN ) in KerasAttention using Context Vector: Hierarchical Attention Networks for Document ClassificationText understanding and mappingRight Way to Input Text Data in Keras Auto EncoderHow to compute document similarities in case of source codes?How to do give input to CNN when doing a text processing?Best practice for short sentences in a deep learning networkValue of loss and accuracy does not change over EpochsSkip-thought models applied to phrases instead of sentencesArchitecture for linear regression with variable input where each input is n-sized one-hot encoded

How can an organ that provides biological immortality be unable to regenerate?

What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?

Do I need to consider instance restrictions when showing a language is in P?

Can you move over difficult terrain with only 5 feet of movement?

Help rendering a complicated sum/product formula

What favor did Moody owe Dumbledore?

Does .bashrc contain syntax errors?

Do US professors/group leaders only get a salary, but no group budget?

Worshiping one God at a time?

Would it be believable to defy demographics in a story?

Generic TVP tradeoffs?

Deletion of copy-ctor & copy-assignment - public, private or protected?

Synchronized implementation of a bank account in Java

Do native speakers use "ultima" and "proxima" frequently in spoken English?

Print a physical multiplication table

Bash - pair each line of file

What does "Four-F." mean?

PTIJ: Do Irish Jews have "the luck of the Irish"?

How do hiring committees for research positions view getting "scooped"?

Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?

Existence of a celestial body big enough for early civilization to be thought of as a second moon

HP P840 HDD RAID 5 many strange drive failures

Knife as defense against stray dogs

Is it insecure to send a password in a `curl` command?



Any workaround to manipulate recurrent CNN model on sentence classification?


Implementing the Dependency Sensitive CNN (DSCNN ) in KerasAttention using Context Vector: Hierarchical Attention Networks for Document ClassificationText understanding and mappingRight Way to Input Text Data in Keras Auto EncoderHow to compute document similarities in case of source codes?How to do give input to CNN when doing a text processing?Best practice for short sentences in a deep learning networkValue of loss and accuracy does not change over EpochsSkip-thought models applied to phrases instead of sentencesArchitecture for linear regression with variable input where each input is n-sized one-hot encoded













0












$begingroup$


I learned how to build recurrent cnn model for text classification and sketched out my initial implementation. However, I am wondering how to transform recurrent cnn model for sentence classification. I am curious how can I come up better implementation of recurrent cnn model for sentence classification task. Here is part of keras solution that I used:



import gensim
import numpy as np
import string
import gensim
from gensim.models import Word2Vec
from gensim.utils import simple_preprocess
from gensim.models.keyedvectors import KeyedVectors

word2vec = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', limit= 500000,binary=True)
embeddings = np.zeros((word2vec.syn0.shape[0] + 1, word2vec.syn0.shape[1]), dtype = "float32")
embeddings[:word2vec.syn0.shape[0]] = word2vec.syn0

MAX_TOKENS = word2vec.syn0.shape[0]
embedding_dim = word2vec.syn0.shape[1]
hidden_dim_1 = 200
hidden_dim_2 = 100
NUM_CLASSES = 10


problem



I want to learn sentence classification task by using recurrent cnn (RCNN) model. The fact that some people used RCNN for object recognition problem. And it is not very intuitive for me how to transform same idea to list of short sentences.



Here is the code that I want to make them work for sentence classification task:



document = Input(shape = (None, ), dtype = "int32")
left_context = Input(shape = (None, ), dtype = "int32")
right_context = Input(shape = (None, ), dtype = "int32")

embedder = Embedding(MAX_TOKENS + 1, embedding_dim, weights = [embeddings], trainable = False)
doc_embedding = embedder(document)
l_embedding = embedder(left_context)
r_embedding = embedder(right_context)


continuation of my code



I am struggling to make above code in problem section for sentence classification problem. Can anyone give me possible idea how to make it work for sentences classification?



If there is efficient transformation on above code, I'd like to continue my pipeline as follow to build RCNN model for sentence classification.



forward = LSTM(hidden_dim_1, return_sequences = True)(l_embedding)
backward = LSTM(hidden_dim_1, return_sequences = True, go_backwards = True)(r_embedding)
backward = Lambda(lambda x: K.reverse(x, axes = 1))(backward)
together = concatenate([forward, doc_embedding, backward], axis = 2)
semantic = Conv1D(hidden_dim_2, kernel_size = 1, activation = "tanh")(together)
pool_rnn = Lambda(lambda x: K.max(x, axis = 1), output_shape = (hidden_dim_2, ))(semantic)
model_output = Dense(NUM_CLASSES, input_dim = hidden_dim_2, activation = "softmax")(pool_rnn)
model_RCNN = Model(inputs = [document, left_context, right_context], outputs = model_output)


maybe I need to tokenize all sentences and create array for right/left context for each sentences, but I didn't get solid idea on that. Any more thoughts?



question



how can I realistically create input matrix for sentences list, right/left context of each sentence? Any workaround to get this done? Any efficient sketch solution to use recurrent cnn model for sentence classification? Thanks in advance!










share|improve this question











$endgroup$
















    0












    $begingroup$


    I learned how to build recurrent cnn model for text classification and sketched out my initial implementation. However, I am wondering how to transform recurrent cnn model for sentence classification. I am curious how can I come up better implementation of recurrent cnn model for sentence classification task. Here is part of keras solution that I used:



    import gensim
    import numpy as np
    import string
    import gensim
    from gensim.models import Word2Vec
    from gensim.utils import simple_preprocess
    from gensim.models.keyedvectors import KeyedVectors

    word2vec = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', limit= 500000,binary=True)
    embeddings = np.zeros((word2vec.syn0.shape[0] + 1, word2vec.syn0.shape[1]), dtype = "float32")
    embeddings[:word2vec.syn0.shape[0]] = word2vec.syn0

    MAX_TOKENS = word2vec.syn0.shape[0]
    embedding_dim = word2vec.syn0.shape[1]
    hidden_dim_1 = 200
    hidden_dim_2 = 100
    NUM_CLASSES = 10


    problem



    I want to learn sentence classification task by using recurrent cnn (RCNN) model. The fact that some people used RCNN for object recognition problem. And it is not very intuitive for me how to transform same idea to list of short sentences.



    Here is the code that I want to make them work for sentence classification task:



    document = Input(shape = (None, ), dtype = "int32")
    left_context = Input(shape = (None, ), dtype = "int32")
    right_context = Input(shape = (None, ), dtype = "int32")

    embedder = Embedding(MAX_TOKENS + 1, embedding_dim, weights = [embeddings], trainable = False)
    doc_embedding = embedder(document)
    l_embedding = embedder(left_context)
    r_embedding = embedder(right_context)


    continuation of my code



    I am struggling to make above code in problem section for sentence classification problem. Can anyone give me possible idea how to make it work for sentences classification?



    If there is efficient transformation on above code, I'd like to continue my pipeline as follow to build RCNN model for sentence classification.



    forward = LSTM(hidden_dim_1, return_sequences = True)(l_embedding)
    backward = LSTM(hidden_dim_1, return_sequences = True, go_backwards = True)(r_embedding)
    backward = Lambda(lambda x: K.reverse(x, axes = 1))(backward)
    together = concatenate([forward, doc_embedding, backward], axis = 2)
    semantic = Conv1D(hidden_dim_2, kernel_size = 1, activation = "tanh")(together)
    pool_rnn = Lambda(lambda x: K.max(x, axis = 1), output_shape = (hidden_dim_2, ))(semantic)
    model_output = Dense(NUM_CLASSES, input_dim = hidden_dim_2, activation = "softmax")(pool_rnn)
    model_RCNN = Model(inputs = [document, left_context, right_context], outputs = model_output)


    maybe I need to tokenize all sentences and create array for right/left context for each sentences, but I didn't get solid idea on that. Any more thoughts?



    question



    how can I realistically create input matrix for sentences list, right/left context of each sentence? Any workaround to get this done? Any efficient sketch solution to use recurrent cnn model for sentence classification? Thanks in advance!










    share|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      I learned how to build recurrent cnn model for text classification and sketched out my initial implementation. However, I am wondering how to transform recurrent cnn model for sentence classification. I am curious how can I come up better implementation of recurrent cnn model for sentence classification task. Here is part of keras solution that I used:



      import gensim
      import numpy as np
      import string
      import gensim
      from gensim.models import Word2Vec
      from gensim.utils import simple_preprocess
      from gensim.models.keyedvectors import KeyedVectors

      word2vec = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', limit= 500000,binary=True)
      embeddings = np.zeros((word2vec.syn0.shape[0] + 1, word2vec.syn0.shape[1]), dtype = "float32")
      embeddings[:word2vec.syn0.shape[0]] = word2vec.syn0

      MAX_TOKENS = word2vec.syn0.shape[0]
      embedding_dim = word2vec.syn0.shape[1]
      hidden_dim_1 = 200
      hidden_dim_2 = 100
      NUM_CLASSES = 10


      problem



      I want to learn sentence classification task by using recurrent cnn (RCNN) model. The fact that some people used RCNN for object recognition problem. And it is not very intuitive for me how to transform same idea to list of short sentences.



      Here is the code that I want to make them work for sentence classification task:



      document = Input(shape = (None, ), dtype = "int32")
      left_context = Input(shape = (None, ), dtype = "int32")
      right_context = Input(shape = (None, ), dtype = "int32")

      embedder = Embedding(MAX_TOKENS + 1, embedding_dim, weights = [embeddings], trainable = False)
      doc_embedding = embedder(document)
      l_embedding = embedder(left_context)
      r_embedding = embedder(right_context)


      continuation of my code



      I am struggling to make above code in problem section for sentence classification problem. Can anyone give me possible idea how to make it work for sentences classification?



      If there is efficient transformation on above code, I'd like to continue my pipeline as follow to build RCNN model for sentence classification.



      forward = LSTM(hidden_dim_1, return_sequences = True)(l_embedding)
      backward = LSTM(hidden_dim_1, return_sequences = True, go_backwards = True)(r_embedding)
      backward = Lambda(lambda x: K.reverse(x, axes = 1))(backward)
      together = concatenate([forward, doc_embedding, backward], axis = 2)
      semantic = Conv1D(hidden_dim_2, kernel_size = 1, activation = "tanh")(together)
      pool_rnn = Lambda(lambda x: K.max(x, axis = 1), output_shape = (hidden_dim_2, ))(semantic)
      model_output = Dense(NUM_CLASSES, input_dim = hidden_dim_2, activation = "softmax")(pool_rnn)
      model_RCNN = Model(inputs = [document, left_context, right_context], outputs = model_output)


      maybe I need to tokenize all sentences and create array for right/left context for each sentences, but I didn't get solid idea on that. Any more thoughts?



      question



      how can I realistically create input matrix for sentences list, right/left context of each sentence? Any workaround to get this done? Any efficient sketch solution to use recurrent cnn model for sentence classification? Thanks in advance!










      share|improve this question











      $endgroup$




      I learned how to build recurrent cnn model for text classification and sketched out my initial implementation. However, I am wondering how to transform recurrent cnn model for sentence classification. I am curious how can I come up better implementation of recurrent cnn model for sentence classification task. Here is part of keras solution that I used:



      import gensim
      import numpy as np
      import string
      import gensim
      from gensim.models import Word2Vec
      from gensim.utils import simple_preprocess
      from gensim.models.keyedvectors import KeyedVectors

      word2vec = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', limit= 500000,binary=True)
      embeddings = np.zeros((word2vec.syn0.shape[0] + 1, word2vec.syn0.shape[1]), dtype = "float32")
      embeddings[:word2vec.syn0.shape[0]] = word2vec.syn0

      MAX_TOKENS = word2vec.syn0.shape[0]
      embedding_dim = word2vec.syn0.shape[1]
      hidden_dim_1 = 200
      hidden_dim_2 = 100
      NUM_CLASSES = 10


      problem



      I want to learn sentence classification task by using recurrent cnn (RCNN) model. The fact that some people used RCNN for object recognition problem. And it is not very intuitive for me how to transform same idea to list of short sentences.



      Here is the code that I want to make them work for sentence classification task:



      document = Input(shape = (None, ), dtype = "int32")
      left_context = Input(shape = (None, ), dtype = "int32")
      right_context = Input(shape = (None, ), dtype = "int32")

      embedder = Embedding(MAX_TOKENS + 1, embedding_dim, weights = [embeddings], trainable = False)
      doc_embedding = embedder(document)
      l_embedding = embedder(left_context)
      r_embedding = embedder(right_context)


      continuation of my code



      I am struggling to make above code in problem section for sentence classification problem. Can anyone give me possible idea how to make it work for sentences classification?



      If there is efficient transformation on above code, I'd like to continue my pipeline as follow to build RCNN model for sentence classification.



      forward = LSTM(hidden_dim_1, return_sequences = True)(l_embedding)
      backward = LSTM(hidden_dim_1, return_sequences = True, go_backwards = True)(r_embedding)
      backward = Lambda(lambda x: K.reverse(x, axes = 1))(backward)
      together = concatenate([forward, doc_embedding, backward], axis = 2)
      semantic = Conv1D(hidden_dim_2, kernel_size = 1, activation = "tanh")(together)
      pool_rnn = Lambda(lambda x: K.max(x, axis = 1), output_shape = (hidden_dim_2, ))(semantic)
      model_output = Dense(NUM_CLASSES, input_dim = hidden_dim_2, activation = "softmax")(pool_rnn)
      model_RCNN = Model(inputs = [document, left_context, right_context], outputs = model_output)


      maybe I need to tokenize all sentences and create array for right/left context for each sentences, but I didn't get solid idea on that. Any more thoughts?



      question



      how can I realistically create input matrix for sentences list, right/left context of each sentence? Any workaround to get this done? Any efficient sketch solution to use recurrent cnn model for sentence classification? Thanks in advance!







      deep-learning nlp cnn recurrent-neural-net






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 3 mins ago







      Dan

















      asked 2 hours ago









      DanDan

      62




      62




















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "557"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47490%2fany-workaround-to-manipulate-recurrent-cnn-model-on-sentence-classification%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47490%2fany-workaround-to-manipulate-recurrent-cnn-model-on-sentence-classification%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?