My Graph Theory StudentsSleeping studentsTwo students guessing positive integerThe Robostanchion Exam (a puzzle about game-graph connectedness)School where every pair of students share a common grandfatherLabelling a graph with a partition of 100Picture a graph without wordsHunter chasing a fox on a graphNumber Theory classNumber Theory Class v2Identify this type of graph puzzle

Should I be concerned about student access to a test bank?

Can a medieval gyroplane be built?

What can I do if I am asked to learn different programming languages very frequently?

Do I need to be arrogant to get ahead?

Is it possible to stack the damage done by the Absorb Elements spell?

I seem to dance, I am not a dancer. Who am I?

How to terminate ping <dest> &

What does Jesus mean regarding "Raca," and "you fool?" - is he contrasting them?

Maths symbols and unicode-math input inside siunitx commands

Generic TVP tradeoffs?

What should I install to correct "ld: cannot find -lgbm and -linput" so that I can compile a Rust program?

What (if any) is the reason to buy in small local stores?

Existence of a celestial body big enough for early civilization to be thought of as a second moon

Do US professors/group leaders only get a salary, but no group budget?

How can an organ that provides biological immortality be unable to regenerate?

How does 取材で訪れた integrate into this sentence?

When did antialiasing start being available?

Is it insecure to send a password in a `curl` command?

Print last inputted byte

What exactly term 'companion plants' means?

Pronounciation of the combination "st" in spanish accents

How are passwords stolen from companies if they only store hashes?

Am I eligible for the Eurail Youth pass? I am 27.5 years old

In Aliens, how many people were on LV-426 before the Marines arrived​?



My Graph Theory Students


Sleeping studentsTwo students guessing positive integerThe Robostanchion Exam (a puzzle about game-graph connectedness)School where every pair of students share a common grandfatherLabelling a graph with a partition of 100Picture a graph without wordsHunter chasing a fox on a graphNumber Theory classNumber Theory Class v2Identify this type of graph puzzle













12












$begingroup$


I have 18 students in my graph theory course this semester: Anne, Bernard, Clare, David,..., and Rachel. At the start of the course I asked them to draw the graph below, in which each of them is represented by a vertex, two of which are joined by a line if, and only if, they represent two students who are friends.



Fewer than half my students turned up for class last Friday. However, because each of the absent students happened to be friends with at least one of those who did attend, I was able to return everyone's assignments either personally or through a friend. In fact, had a smaller group of students shown up for my class on Friday, I would have been unable to do this.



How may students attended my class on Friday, and who were they?enter image description here










share|improve this question









$endgroup$
















    12












    $begingroup$


    I have 18 students in my graph theory course this semester: Anne, Bernard, Clare, David,..., and Rachel. At the start of the course I asked them to draw the graph below, in which each of them is represented by a vertex, two of which are joined by a line if, and only if, they represent two students who are friends.



    Fewer than half my students turned up for class last Friday. However, because each of the absent students happened to be friends with at least one of those who did attend, I was able to return everyone's assignments either personally or through a friend. In fact, had a smaller group of students shown up for my class on Friday, I would have been unable to do this.



    How may students attended my class on Friday, and who were they?enter image description here










    share|improve this question









    $endgroup$














      12












      12








      12


      2



      $begingroup$


      I have 18 students in my graph theory course this semester: Anne, Bernard, Clare, David,..., and Rachel. At the start of the course I asked them to draw the graph below, in which each of them is represented by a vertex, two of which are joined by a line if, and only if, they represent two students who are friends.



      Fewer than half my students turned up for class last Friday. However, because each of the absent students happened to be friends with at least one of those who did attend, I was able to return everyone's assignments either personally or through a friend. In fact, had a smaller group of students shown up for my class on Friday, I would have been unable to do this.



      How may students attended my class on Friday, and who were they?enter image description here










      share|improve this question









      $endgroup$




      I have 18 students in my graph theory course this semester: Anne, Bernard, Clare, David,..., and Rachel. At the start of the course I asked them to draw the graph below, in which each of them is represented by a vertex, two of which are joined by a line if, and only if, they represent two students who are friends.



      Fewer than half my students turned up for class last Friday. However, because each of the absent students happened to be friends with at least one of those who did attend, I was able to return everyone's assignments either personally or through a friend. In fact, had a smaller group of students shown up for my class on Friday, I would have been unable to do this.



      How may students attended my class on Friday, and who were they?enter image description here







      mathematics no-computers graph-theory






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 days ago









      Bernardo Recamán SantosBernardo Recamán Santos

      2,7011348




      2,7011348




















          2 Answers
          2






          active

          oldest

          votes


















          11












          $begingroup$

          This is an excellent question to demonstrate why the greedy algorithm doesn't always work

          The minimum number is actually




          $4$




          Here are the students which would satisfy the criteria (I think this group is unique)




          $F, J, N, O$ (Frank, Jack, Norman, Orville)




          Proof that this is minimal




          As El-Guest pointed out the maximum number of friendships in the group are held by $M$ & $E$ with $6$ & $5$, respectively. Every other person has four friends or fewer. Therefore, the maximum possible number of people covered by three students is $7+6+5 = 18$. This could only possibly be achieved if $M$ and $E$ were in the group of three but, as El-Guest explored, you need to add three more students to cover everyone else.







          share|improve this answer











          $endgroup$












          • $begingroup$
            I used a solver, getting the same solution and only this one ; hence i am pretty sure it is unique.
            $endgroup$
            – aluriak
            2 days ago







          • 1




            $begingroup$
            For those interested in the mathematical details, this is called the Set Cover problem. It is a well known problem in computer science and is NP-Hard.The best known linear programming approaches take exponential time.
            $endgroup$
            – darksky
            yesterday


















          4












          $begingroup$

          I'd assume that you'd want




          to have the students attend which have the maximum number of friendships...




          So:




          M & E have 6 & 5 friendships respectively, then P,Q,R,D,F,J don't have to go thanks to M; and A,H,K,N,R don't have to go thanks to E. This leaves us with B,C,G,I,L,O who we need to deal with. O is only connected to P,Q,R, so they have to attend; C is connected with G,I,L; and then B is the last one left who has to show up.




          The minimum number of students is therefore




          5, and they are Megan, Ethan, Billy, Chris, and Orville.







          share|improve this answer









          $endgroup$












          • $begingroup$
            I figured as much, I didn't like how two of the students had to double up.
            $endgroup$
            – El-Guest
            2 days ago






          • 3




            $begingroup$
            How do you know this is minimal?
            $endgroup$
            – noedne
            2 days ago






          • 1




            $begingroup$
            I didn’t, as clearly demonstrated by hexomino’s answer.
            $endgroup$
            – El-Guest
            2 days ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "559"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80718%2fmy-graph-theory-students%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          11












          $begingroup$

          This is an excellent question to demonstrate why the greedy algorithm doesn't always work

          The minimum number is actually




          $4$




          Here are the students which would satisfy the criteria (I think this group is unique)




          $F, J, N, O$ (Frank, Jack, Norman, Orville)




          Proof that this is minimal




          As El-Guest pointed out the maximum number of friendships in the group are held by $M$ & $E$ with $6$ & $5$, respectively. Every other person has four friends or fewer. Therefore, the maximum possible number of people covered by three students is $7+6+5 = 18$. This could only possibly be achieved if $M$ and $E$ were in the group of three but, as El-Guest explored, you need to add three more students to cover everyone else.







          share|improve this answer











          $endgroup$












          • $begingroup$
            I used a solver, getting the same solution and only this one ; hence i am pretty sure it is unique.
            $endgroup$
            – aluriak
            2 days ago







          • 1




            $begingroup$
            For those interested in the mathematical details, this is called the Set Cover problem. It is a well known problem in computer science and is NP-Hard.The best known linear programming approaches take exponential time.
            $endgroup$
            – darksky
            yesterday















          11












          $begingroup$

          This is an excellent question to demonstrate why the greedy algorithm doesn't always work

          The minimum number is actually




          $4$




          Here are the students which would satisfy the criteria (I think this group is unique)




          $F, J, N, O$ (Frank, Jack, Norman, Orville)




          Proof that this is minimal




          As El-Guest pointed out the maximum number of friendships in the group are held by $M$ & $E$ with $6$ & $5$, respectively. Every other person has four friends or fewer. Therefore, the maximum possible number of people covered by three students is $7+6+5 = 18$. This could only possibly be achieved if $M$ and $E$ were in the group of three but, as El-Guest explored, you need to add three more students to cover everyone else.







          share|improve this answer











          $endgroup$












          • $begingroup$
            I used a solver, getting the same solution and only this one ; hence i am pretty sure it is unique.
            $endgroup$
            – aluriak
            2 days ago







          • 1




            $begingroup$
            For those interested in the mathematical details, this is called the Set Cover problem. It is a well known problem in computer science and is NP-Hard.The best known linear programming approaches take exponential time.
            $endgroup$
            – darksky
            yesterday













          11












          11








          11





          $begingroup$

          This is an excellent question to demonstrate why the greedy algorithm doesn't always work

          The minimum number is actually




          $4$




          Here are the students which would satisfy the criteria (I think this group is unique)




          $F, J, N, O$ (Frank, Jack, Norman, Orville)




          Proof that this is minimal




          As El-Guest pointed out the maximum number of friendships in the group are held by $M$ & $E$ with $6$ & $5$, respectively. Every other person has four friends or fewer. Therefore, the maximum possible number of people covered by three students is $7+6+5 = 18$. This could only possibly be achieved if $M$ and $E$ were in the group of three but, as El-Guest explored, you need to add three more students to cover everyone else.







          share|improve this answer











          $endgroup$



          This is an excellent question to demonstrate why the greedy algorithm doesn't always work

          The minimum number is actually




          $4$




          Here are the students which would satisfy the criteria (I think this group is unique)




          $F, J, N, O$ (Frank, Jack, Norman, Orville)




          Proof that this is minimal




          As El-Guest pointed out the maximum number of friendships in the group are held by $M$ & $E$ with $6$ & $5$, respectively. Every other person has four friends or fewer. Therefore, the maximum possible number of people covered by three students is $7+6+5 = 18$. This could only possibly be achieved if $M$ and $E$ were in the group of three but, as El-Guest explored, you need to add three more students to cover everyone else.








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 2 days ago

























          answered 2 days ago









          hexominohexomino

          43.4k3129208




          43.4k3129208











          • $begingroup$
            I used a solver, getting the same solution and only this one ; hence i am pretty sure it is unique.
            $endgroup$
            – aluriak
            2 days ago







          • 1




            $begingroup$
            For those interested in the mathematical details, this is called the Set Cover problem. It is a well known problem in computer science and is NP-Hard.The best known linear programming approaches take exponential time.
            $endgroup$
            – darksky
            yesterday
















          • $begingroup$
            I used a solver, getting the same solution and only this one ; hence i am pretty sure it is unique.
            $endgroup$
            – aluriak
            2 days ago







          • 1




            $begingroup$
            For those interested in the mathematical details, this is called the Set Cover problem. It is a well known problem in computer science and is NP-Hard.The best known linear programming approaches take exponential time.
            $endgroup$
            – darksky
            yesterday















          $begingroup$
          I used a solver, getting the same solution and only this one ; hence i am pretty sure it is unique.
          $endgroup$
          – aluriak
          2 days ago





          $begingroup$
          I used a solver, getting the same solution and only this one ; hence i am pretty sure it is unique.
          $endgroup$
          – aluriak
          2 days ago





          1




          1




          $begingroup$
          For those interested in the mathematical details, this is called the Set Cover problem. It is a well known problem in computer science and is NP-Hard.The best known linear programming approaches take exponential time.
          $endgroup$
          – darksky
          yesterday




          $begingroup$
          For those interested in the mathematical details, this is called the Set Cover problem. It is a well known problem in computer science and is NP-Hard.The best known linear programming approaches take exponential time.
          $endgroup$
          – darksky
          yesterday











          4












          $begingroup$

          I'd assume that you'd want




          to have the students attend which have the maximum number of friendships...




          So:




          M & E have 6 & 5 friendships respectively, then P,Q,R,D,F,J don't have to go thanks to M; and A,H,K,N,R don't have to go thanks to E. This leaves us with B,C,G,I,L,O who we need to deal with. O is only connected to P,Q,R, so they have to attend; C is connected with G,I,L; and then B is the last one left who has to show up.




          The minimum number of students is therefore




          5, and they are Megan, Ethan, Billy, Chris, and Orville.







          share|improve this answer









          $endgroup$












          • $begingroup$
            I figured as much, I didn't like how two of the students had to double up.
            $endgroup$
            – El-Guest
            2 days ago






          • 3




            $begingroup$
            How do you know this is minimal?
            $endgroup$
            – noedne
            2 days ago






          • 1




            $begingroup$
            I didn’t, as clearly demonstrated by hexomino’s answer.
            $endgroup$
            – El-Guest
            2 days ago















          4












          $begingroup$

          I'd assume that you'd want




          to have the students attend which have the maximum number of friendships...




          So:




          M & E have 6 & 5 friendships respectively, then P,Q,R,D,F,J don't have to go thanks to M; and A,H,K,N,R don't have to go thanks to E. This leaves us with B,C,G,I,L,O who we need to deal with. O is only connected to P,Q,R, so they have to attend; C is connected with G,I,L; and then B is the last one left who has to show up.




          The minimum number of students is therefore




          5, and they are Megan, Ethan, Billy, Chris, and Orville.







          share|improve this answer









          $endgroup$












          • $begingroup$
            I figured as much, I didn't like how two of the students had to double up.
            $endgroup$
            – El-Guest
            2 days ago






          • 3




            $begingroup$
            How do you know this is minimal?
            $endgroup$
            – noedne
            2 days ago






          • 1




            $begingroup$
            I didn’t, as clearly demonstrated by hexomino’s answer.
            $endgroup$
            – El-Guest
            2 days ago













          4












          4








          4





          $begingroup$

          I'd assume that you'd want




          to have the students attend which have the maximum number of friendships...




          So:




          M & E have 6 & 5 friendships respectively, then P,Q,R,D,F,J don't have to go thanks to M; and A,H,K,N,R don't have to go thanks to E. This leaves us with B,C,G,I,L,O who we need to deal with. O is only connected to P,Q,R, so they have to attend; C is connected with G,I,L; and then B is the last one left who has to show up.




          The minimum number of students is therefore




          5, and they are Megan, Ethan, Billy, Chris, and Orville.







          share|improve this answer









          $endgroup$



          I'd assume that you'd want




          to have the students attend which have the maximum number of friendships...




          So:




          M & E have 6 & 5 friendships respectively, then P,Q,R,D,F,J don't have to go thanks to M; and A,H,K,N,R don't have to go thanks to E. This leaves us with B,C,G,I,L,O who we need to deal with. O is only connected to P,Q,R, so they have to attend; C is connected with G,I,L; and then B is the last one left who has to show up.




          The minimum number of students is therefore




          5, and they are Megan, Ethan, Billy, Chris, and Orville.








          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 2 days ago









          El-GuestEl-Guest

          20.5k24690




          20.5k24690











          • $begingroup$
            I figured as much, I didn't like how two of the students had to double up.
            $endgroup$
            – El-Guest
            2 days ago






          • 3




            $begingroup$
            How do you know this is minimal?
            $endgroup$
            – noedne
            2 days ago






          • 1




            $begingroup$
            I didn’t, as clearly demonstrated by hexomino’s answer.
            $endgroup$
            – El-Guest
            2 days ago
















          • $begingroup$
            I figured as much, I didn't like how two of the students had to double up.
            $endgroup$
            – El-Guest
            2 days ago






          • 3




            $begingroup$
            How do you know this is minimal?
            $endgroup$
            – noedne
            2 days ago






          • 1




            $begingroup$
            I didn’t, as clearly demonstrated by hexomino’s answer.
            $endgroup$
            – El-Guest
            2 days ago















          $begingroup$
          I figured as much, I didn't like how two of the students had to double up.
          $endgroup$
          – El-Guest
          2 days ago




          $begingroup$
          I figured as much, I didn't like how two of the students had to double up.
          $endgroup$
          – El-Guest
          2 days ago




          3




          3




          $begingroup$
          How do you know this is minimal?
          $endgroup$
          – noedne
          2 days ago




          $begingroup$
          How do you know this is minimal?
          $endgroup$
          – noedne
          2 days ago




          1




          1




          $begingroup$
          I didn’t, as clearly demonstrated by hexomino’s answer.
          $endgroup$
          – El-Guest
          2 days ago




          $begingroup$
          I didn’t, as clearly demonstrated by hexomino’s answer.
          $endgroup$
          – El-Guest
          2 days ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f80718%2fmy-graph-theory-students%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Adding axes to figuresAdding axes labels to LaTeX figuresLaTeX equivalent of ConTeXt buffersRotate a node but not its content: the case of the ellipse decorationHow to define the default vertical distance between nodes?TikZ scaling graphic and adjust node position and keep font sizeNumerical conditional within tikz keys?adding axes to shapesAlign axes across subfiguresAdding figures with a certain orderLine up nested tikz enviroments or how to get rid of themAdding axes labels to LaTeX figures

          Tähtien Talli Jäsenet | Lähteet | NavigointivalikkoSuomen Hippos – Tähtien Talli

          Do these cracks on my tires look bad? The Next CEO of Stack OverflowDry rot tire should I replace?Having to replace tiresFishtailed so easily? Bad tires? ABS?Filling the tires with something other than air, to avoid puncture hassles?Used Michelin tires safe to install?Do these tyre cracks necessitate replacement?Rumbling noise: tires or mechanicalIs it possible to fix noisy feathered tires?Are bad winter tires still better than summer tires in winter?Torque converter failure - Related to replacing only 2 tires?Why use snow tires on all 4 wheels on 2-wheel-drive cars?